首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   14篇
  2022年   1篇
  2021年   2篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   12篇
  2014年   9篇
  2013年   7篇
  2012年   16篇
  2011年   13篇
  2010年   5篇
  2009年   10篇
  2008年   8篇
  2007年   7篇
  2006年   8篇
  2005年   6篇
  2004年   1篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1994年   2篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
  1961年   3篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
31.
Oshrit Arviv  Yaakov Levy 《Proteins》2012,80(12):2780-2798
Most eukaryotic and a substantial fraction of prokaryotic proteins are composed of more than one domain. The tethering of these evolutionary, structural, and functional units raises, among others, questions regarding the folding process of conjugated domains. Studying the folding of multidomain proteins in silico enables one to identify and isolate the tethering‐induced biophysical determinants that govern crosstalks generated between neighboring domains. For this purpose, we carried out coarse‐grained and atomistic molecular dynamics simulations of two two‐domain constructs from the immunoglobulin‐like β‐sandwich fold. Each of these was experimentally shown to behave as the “sum of its parts,” that is, the thermodynamic and kinetic folding behavior of the constituent domains of these constructs seems to occur independently, with the folding of each domain uncoupled from the folding of its partner in the two‐domain construct. We show that the properties of the individual domains can be significantly affected by conjugation to another domain. The tethering may be accompanied by stabilizing as well as destabilizing factors whose magnitude depends on the size of the interface, the length, and the flexibility of the linker, and the relative stability of the domains. Accordingly, the folding of a multidomain protein should not be viewed as the sum of the folding patterns of each of its parts, but rather, it involves abrogating several effects that lead to this outcome. An imbalance between these effects may result in either stabilization or destabilization owing to the tethering. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   
32.
As clinical and cognitive neuroscience mature, the need for sophisticated neuroimaging analysis becomes more apparent. Multivariate analysis techniques have recently received increasing attention as they have many attractive features that cannot be easily realized by the more commonly used univariate, voxel-wise, techniques. Multivariate approaches evaluate correlation/covariance of activation across brain regions, rather than proceeding on a voxel-by-voxel basis. Thus, their results can be more easily interpreted as a signature of neural networks. Univariate approaches, on the other hand, cannot directly address functional connectivity in the brain. The covariance approach can also result in greater statistical power when compared with univariate techniques, which are forced to employ very stringent, and often overly conservative, corrections for voxel-wise multiple comparisons. Multivariate techniques also lend themselves much better to prospective application of results from the analysis of one dataset to entirely new datasets. Multivariate techniques are thus well placed to provide information about mean differences and correlations with behavior, similarly to univariate approaches, with potentially greater statistical power and better reproducibility checks. In contrast to these advantages is the high barrier of entry to the use of multivariate approaches, preventing more widespread application in the community. To the neuroscientist becoming familiar with multivariate analysis techniques, an initial survey of the field might present a bewildering variety of approaches that, although algorithmically similar, are presented with different emphases, typically by people with mathematics backgrounds. We believe that multivariate analysis techniques have sufficient potential to warrant better dissemination. Researchers should be able to employ them in an informed and accessible manner. The following article attempts to provide a basic introduction with sample applications to simulated and real-world data sets.  相似文献   
33.
The western flower thrips (WFT), Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), a cosmopolitan pest of many crops, is considered a major pest of low tunnel and greenhouse strawberries. The extent of damage to strawberry is unclear because different studies have produced contradictory results. Also, economic thresholds published for WFT in strawberry vary greatly, and most fail to incorporate economic factors. This study was aimed at developing a decision‐making tool for WFT management in strawberries in Israel. Toward this end, economic injury levels (EIL) and economic thresholds were calculated, based on target markets (export vs. domestic). Results indicate that serious infestation of ripe berries may cause a dull, rough appearance, and the fruit may be soft and have a reduced shelf life, rendering it unsuitable for export. Most fruit damage occurred at green and turning‐red stages of development. Two decision‐making tools were developed, one for winter, when WFT populations increase slowly but crop value is high (export market); and the second for spring, when the pest increases rapidly but crop value is low (local markets). Economic thresholds of 10 and 24 WFT/flower were calculated for winter and spring strawberries, respectively, based on direct thrips damage to fruit. This calculation does not take into account the recorded WFT damage to flowers, or its role in facilitating Botrytis cinerea fruit infection. Western flower thrips has proved only an occasional economic pest in Israeli strawberries, and no routine control measures are warranted. Furthermore, augmentative releases of Orius laevigatus or Neoseilus cucumeris against WFT are not justified in this system, because Orius colonizes strawberry fields spontaneously in high numbers when no broad spectrum insecticides are used.  相似文献   
34.
35.
36.
Aging has a multi-faceted impact on brain structure, brain function and cognitive task performance, but the interaction of these different age-related changes is largely unexplored. We hypothesize that age-related structural changes alter the functional connectivity within the brain, resulting in altered task performance during cognitive challenges. In this neuroimaging study, we used independent components analysis to identify spatial patterns of coordinated functional activity involved in the performance of a verbal delayed item recognition task from 75 healthy young and 37 healthy old adults. Strength of functional connectivity between spatial components was assessed for age group differences and related to speeded task performance. We then assessed whether age-related differences in global brain volume were associated with age-related differences in functional network connectivity. Both age groups used a series of spatial components during the verbal working memory task and the strength and distribution of functional network connectivity between these components differed across the age groups. Poorer task performance, i.e. slower speed with increasing memory load, in the old adults was associated with decreases in functional network connectivity between components comprised of the supplementary motor area and the middle cingulate and between the precuneus and the middle/superior frontal cortex. Advancing age also led to decreased brain volume; however, there was no evidence to support the hypothesis that age-related alterations in functional network connectivity were the result of global brain volume changes. These results suggest that age-related differences in the coordination of neural activity between brain regions partially underlie differences in cognitive performance.  相似文献   
37.
The abundant flavonoid aglycone, naringenin, which is responsible for the bitter taste in grapefruits, has been shown to possess hypolipidemic and anti-inflammatory effects both in vitro and in vivo. Recently, our group demonstrated that naringenin inhibits hepatitis C virus (HCV) production, while others demonstrated its potential in the treatment of hyperlipidemia and diabetes. However, naringenin suffers from low oral bioavailability critically limiting its clinical potential. In this study, we demonstrate that the solubility of naringenin is enhanced by complexation with β-cyclodextrin, an FDA approved excipient. Hydroxypropoyl-β-cyclodextrin (HPβCD), specifically, increased the solubility of naringenin by over 400-fold, and its transport across a Caco-2 model of the gut epithelium by 11-fold. Complexation of naringenin with HPβCD increased its plasma concentrations when fed to rats, with AUC values increasing by 7.4-fold and C(max) increasing 14.6-fold. Moreover, when the complex was administered just prior to a meal it decreased VLDL levels by 42% and increased the rate of glucose clearance by 64% compared to naringenin alone. These effects correlated with increased expression of the PPAR co-activator, PGC1α in both liver and skeletal muscle. Histology and blood chemistry analysis indicated this route of administration was not associated with damage to the intestine, kidney, or liver. These results suggest that the complexation of naringenin with HPβCD is a viable option for the oral delivery of naringenin as a therapeutic entity with applications in the treatment of dyslipidemia, diabetes, and HCV infection.  相似文献   
38.
In order to broaden the available genetic variation of melon, we developed an ethyl methanesulfonate mutation library in an orange-flesh ‘Charentais’ type melon line that accumulates β-carotene. One mutagenized M2 family segregated for a novel recessive trait, a yellow–orange fruit flesh (‘yofI’). HPLC analysis revealed that ‘yofI’ accumulates pro-lycopene (tetra-cis-lycopene) as its major fruit pigment. The altered carotenoid composition of ‘yofI’ is associated with a significant change of the fruit aroma since cleavage of β-carotene yields different apocarotenoids than the cleavage of pro-lycopene. Normally, pro-lycopene is further isomerized by CRTISO (carotenoid isomerase) to yield all-trans-lycopene, which is further cyclized to β-carotene in melon fruit. Cloning and sequencing of ‘yofI’ CRTISO identified two mRNA sequences which lead to truncated forms of CRTISO. Sequencing of the genomic CRTISO identified an A–T transversion in ‘yofI’ which leads to a premature STOP codon. The early carotenoid pathway genes were up regulated in yofI fruit causing accumulation of other intermediates such as phytoene and ζ-carotene. Total carotenoid levels are only slightly increased in the mutant. Mutants accumulating pro-lycopene have been reported in both tomato and watermelon fruits, however, this is the first report of a non-lycopene accumulating fruit showing this phenomenon.  相似文献   
39.
40.
Automated analyses of neuronal morphology are important for quantifying connectivity and circuitry in vivo, as well as in high content imaging of primary neuron cultures. The currently available tools for quantification of neuronal morphology either are highly expensive commercial packages or cannot provide automated image quantifications at single cell resolution. Here, we describe a new software package called WIS‐NeuroMath, which fills this gap and provides solutions for automated measurement of neuronal processes in both in vivo and in vitro preparations. Diverse image types can be analyzed without any preprocessing, enabling automated and accurate detection of neurites followed by their quantification in a number of application modules. A cell morphology module detects cell bodies and attached neurites, providing information on neurite length, number of branches, cell body area, and other parameters for each cell. A neurite length module provides a solution for images lacking cell bodies, such as tissue sections. Finally, a ganglion explant module quantifies outgrowth by identifying neurites at different distances from the ganglion. Quantification of a diverse series of preparations with WIS‐NeuroMath provided data that were well matched with parallel analyses of the same preparations in established software packages such as MetaXpress or NeuronJ. The capabilities of WIS‐NeuroMath are demonstrated in a range of applications, including in dissociated and explant cultures and histological analyses on thin and whole‐mount sections. WIS‐NeuroMath is freely available to academic users, providing a versatile and cost‐effective range of solutions for quantifying neurite growth, branching, regeneration, or degeneration under different experimental paradigms. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号