首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   415篇
  免费   10篇
  国内免费   5篇
  430篇
  2021年   4篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   6篇
  2013年   13篇
  2012年   13篇
  2011年   24篇
  2010年   34篇
  2009年   33篇
  2008年   20篇
  2007年   32篇
  2006年   29篇
  2005年   30篇
  2004年   24篇
  2003年   27篇
  2002年   21篇
  2001年   8篇
  2000年   1篇
  1999年   4篇
  1998年   9篇
  1997年   8篇
  1996年   7篇
  1995年   6篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1987年   6篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   5篇
  1978年   3篇
  1975年   3篇
  1974年   1篇
  1972年   1篇
  1971年   4篇
  1958年   6篇
  1955年   1篇
  1954年   2篇
  1951年   1篇
  1949年   1篇
排序方式: 共有430条查询结果,搜索用时 15 毫秒
51.
ABSTRACT Estimating black bear (Ursus americanus) population size is a difficult but important requirement when justifying harvest quotas and managing populations. Advancements in genetic techniques provide a means to identify individual bears using DNA contained in tissue and hair samples, thereby permitting estimates of population abundance based on established mark-capture-recapture methodology. We expand on previous noninvasive population-estimation work by geographically extending sampling areas (36,848 km2) to include the entire Northern Lower Peninsula (NLP) of Michigan, USA. We selected sampling locations randomly within biologically relevant bear habitat and used barbed wire hair snares to collect hair samples. Unlike previous noninvasive studies, we used tissue samples from harvested bears as an additional sampling occasion to increase recapture probabilities. We developed subsampling protocols to account for both spatial and temporal variance in sample distribution and variation in sample quality using recently published quality control protocols using 5 microsatellite loci. We quantified genotyping errors using samples from harvested bears and estimated abundance using statistical models that accounted for genotyping error. We estimated the population of yearling and adult black bears in the NLP to be 1,882 bears (95% CI = 1,389-2,551 bears). The derived population estimate with a 15% coefficient of variation was used by wildlife managers to examine the sustainability of harvest over a large geographic area.  相似文献   
52.
53.
ABSTRACT. The identification of Favella ehrenbergii, a marine planktonic ciliate, has largely been based on its lorica features. This approach is potentially problematic given the polymorphic lorica during this organism's life cycle. We isolated a population of F. ehrenbergii from the coastal waters of Incheon, Korea, and revealed its infraciliature using the protargol staining method. Phylogenetic analysis based on small subunit rRNA gene sequences was also performed. Results showed that this population possessed 16 collar membranelles (CM) and about 100 somatic kineties. These features are highly conserved, even in later dividers. As such, the number of CM and somatic kineties can be used as key characteristics for identification of Favella species.  相似文献   
54.
55.
The beetle family Eucinetidae, represented by Eucinetus haemorrhoidalis (Germar), is newly recorded from southern parts of the Korean Peninsula, extending its distributional range by several hundred kilometers to the south. A habitus photo and illustrations of the diagnostic characters of species are provided.  相似文献   
56.
57.
We combined Eddy‐covariance measurements with a linear perturbation analysis to isolate the relative contribution of physical and biological drivers on evapotranspiration (ET) in three ecosystems representing two end‐members and an intermediate stage of a successional gradient in the southeastern US (SE). The study ecosystems, an abandoned agricultural field [old field (OF)], an early successional planted pine forest (PP), and a late‐successional hardwood forest (HW), exhibited differential sensitivity to the wide range of climatic and hydrologic conditions encountered over the 4‐year measurement period, which included mild and severe droughts and an ice storm. ET and modeled transpiration differed by as much as 190 and 270 mm yr?1, respectively, between years for a given ecosystem. Soil water supply, rather than atmospheric demand, was the principal external driver of interannual ET differences. ET at OF was sensitive to climatic variability, and results showed that decreased leaf area index (L) under mild and severe drought conditions reduced growing season (GS) ET (ETGS) by ca. 80 mm compared with a year with normal precipitation. Under wet conditions, higher intrinsic stomatal conductance (gs) increased ETGS by 50 mm. ET at PP was generally larger than the other ecosystems and was highly sensitive to climate; a 50 mm decrease in ETGS due to the loss of L from an ice storm equaled the increase in ET from high precipitation during a wet year. In contrast, ET at HW was relatively insensitive to climatic variability. Results suggest that recent management trends toward increasing the land‐cover area of PP‐type ecosystems in the SE may increase the sensitivity of ET to climatic variability.  相似文献   
58.
59.
1. A key element of conservation planning is the extremely challenging task of estimating the likely effect of restoration actions on population status. To compare the relative benefits of typical habitat restoration actions on Pacific salmon (Oncorhynchus spp.), we modelled the response of an endangered Columbia River Chinook salmon (O. tshawytscha) population to changes in habitat characteristics either targeted for restoration or with the potential to be degraded. 2. We applied a spatially explicit, multiple life stage, Beverton‐Holt model to evaluate how a set of habitat variables with an empirical influence on spring‐run Chinook salmon survivorship influenced fish population abundance, productivity, spatial structure and diversity. Using habitat condition scenarios – historical conditions and future conditions with restoration, no restoration, and degradation – we asked the following questions: (i) how is population status affected by alternative scenarios of habitat change, (ii) which individual habitat characteristics have the potential to substantially influence population status and (iii) which life stages have the largest impact on population status? 3. The difference in population abundance and productivities resulting from changes in modelled habitat variables from the ‘historical’ to ‘current’ scenarios suggests that there is substantial potential for improving population status. Planned restoration actions directed toward modelled variables, however, produced only modest improvements. 4. The model predicted that population status could be improved by additional restoration efforts directed toward further reductions in the percentage of fine sediments in the streambed, a factor that has a large influence on egg survival. Actions reducing fines were predicted to be especially effective outside the national forest that covers most of the basin. Scenarios that increased capacity by opening access to habitat in good condition also had a positive but smaller effect on spawner numbers. 5. Degradation in habitat quality, particularly in percent fine sediments, within stream reaches located in the national forest had great potential to further reduce this population’s viability. This finding supports current forest planning efforts to minimise road density and clear‐cut harvests and to return forest stand structure in dry regions to the historical condition that promoted frequent low‐intensity fires rather than catastrophic stand‐replacing fires, as these landscape factors have been shown to influence percent fine sediment in streams. 6. Together, these results suggest that planning focusing on protecting currently good habitat, reducing fine sediments to promote egg survival and increasing spawner capacity will be beneficial to endangered spring‐run Chinook population status.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号