首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41873篇
  免费   4138篇
  国内免费   5630篇
  2024年   88篇
  2023年   515篇
  2022年   908篇
  2021年   1766篇
  2020年   1354篇
  2019年   1663篇
  2018年   1518篇
  2017年   1099篇
  2016年   1615篇
  2015年   2587篇
  2014年   3023篇
  2013年   3204篇
  2012年   3959篇
  2011年   3670篇
  2010年   2336篇
  2009年   2142篇
  2008年   2537篇
  2007年   2326篇
  2006年   2076篇
  2005年   1724篇
  2004年   1580篇
  2003年   1313篇
  2002年   1158篇
  2001年   903篇
  2000年   850篇
  1999年   747篇
  1998年   435篇
  1997年   372篇
  1996年   348篇
  1995年   289篇
  1994年   304篇
  1993年   201篇
  1992年   342篇
  1991年   314篇
  1990年   262篇
  1989年   239篇
  1988年   206篇
  1987年   172篇
  1986年   158篇
  1985年   160篇
  1984年   151篇
  1983年   109篇
  1982年   101篇
  1980年   64篇
  1979年   77篇
  1978年   70篇
  1977年   59篇
  1976年   69篇
  1975年   63篇
  1974年   75篇
排序方式: 共有10000条查询结果,搜索用时 249 毫秒
951.
952.
Lin  Xiaohui  Chen  Hongbin  Chen  Manli  Li  Ting  Lai  Yongxing  Lin  Longzai  Lin  Peiqiang  Liu  Ji  Zhang  Yixian  Chen  Ronghua  Du  Houwei  Jiang  Xinhong  Liu  Nan 《Molecular and cellular biochemistry》2021,476(5):2193-2201

Background: Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) is a potential therapy for cerebral ischemia. However, the underlying protective mechanism remains undetermined. Here, we tested the hypothesis that transplantation of BMSCs via intravenous injection can alleviate neurological functional deficits through activating PI3K/AKT signaling pathway after cerebral ischemia in rats.

Methods: A cerebral ischemic rat model was established by the 2 h middle cerebral artery occlusion (MCAO). Twenty-four hours later, BMSCs (1?×?106 in 1 ml PBS) from SD rats were injected into the tail vein. Neurological function was evaluated by modified neurological severity score (mNSS) and modified adhesive removal test before and on d1, d3, d7, d10 and d14 after MCAO. Protein expressions of AKT, GSK-3β, CRMP-2 and GAP-43 were detected by Western-bolt. NF-200 was detected by immunofluorescence.

Results: BMSCs transplantation did not only significantly improve the mNSS score and the adhesive-removal somatosensory test after MCAO, but also increase the density of NF-200 and the expression of p-AKT, pGSK-3β and GAP-43, while decrease the expression of pCRMP-2. Meanwhile, these effects can be suppressed by LY294002, a specific inhibitor of PI3K/AKT.

Conclusion: These data suggest that transplantation of BMSCs could promote axon growth and neurological deficit recovery after MCAO, which was associated with activation of PI3K/AKT /GSK-3β/CRMP-2 signaling pathway.

  相似文献   
953.
With the tremendous increase of publicly available single-cell RNA-sequencing (scRNA-seq) datasets, bioinformatics methods based on gene co-expression network are becoming efficient tools for analyzing scRNA-seq data, improving cell type prediction accuracy and in turn facilitating biological discovery. However, the current methods are mainly based on overall co-expression correlation and overlook co-expression that exists in only a subset of cells, thus fail to discover certain rare cell types and sensitive to batch effect. Here, we developed independent component analysis-based gene co-expression network inference (ICAnet) that decomposed scRNA-seq data into a series of independent gene expression components and inferred co-expression modules, which improved cell clustering and rare cell-type discovery. ICAnet showed efficient performance for cell clustering and batch integration using scRNA-seq datasets spanning multiple cells/tissues/donors/library types. It works stably on datasets produced by different library construction strategies and with different sequencing depths and cell numbers. We demonstrated the capability of ICAnet to discover rare cell types in multiple independent scRNA-seq datasets from different sources. Importantly, the identified modules activated in acute myeloid leukemia scRNA-seq datasets have the potential to serve as new diagnostic markers. Thus, ICAnet is a competitive tool for cell clustering and biological interpretations of single-cell RNA-seq data analysis.  相似文献   
954.
955.
Coral Reefs - The Arabian Gulf is a natural laboratory to examine how subtropical coral reef ecosystems might change in responding to recurring heating events because of uniquely high water...  相似文献   
956.
SARS-CoV-2 infects humans through the binding of viral S-protein (spike protein) to human angiotensin I converting enzyme 2 (ACE2). The structure of the ACE2-S-protein complex has been deciphered and we focused on the 27 ACE2 residues that bind to S-protein. From human sequence databases, we identified nine ACE2 variants at ACE2–S-protein binding sites. We used both experimental assays and protein structure analysis to evaluate the effect of each variant on the binding affinity of ACE2 to S-protein. We found one variant causing complete binding disruption, two and three variants, respectively, strongly and mildly reducing the binding affinity, and two variants strongly enhancing the binding affinity. We then collected the ACE2 gene sequences from 57 nonhuman primates. Among the 6 apes and 20 Old World monkeys (OWMs) studied, we found no new variants. In contrast, all 11 New World monkeys (NWMs) studied share four variants each causing a strong reduction in binding affinity, the Philippine tarsier also possesses three such variants, and 18 of the 19 prosimian species studied share one variant causing a strong reduction in binding affinity. Moreover, one OWM and three prosimian variants increased binding affinity by >50%. Based on these findings, we proposed that the common ancestor of primates was strongly resistant to and that of NWMs was completely resistant to SARS-CoV-2 and so is the Philippine tarsier, whereas apes and OWMs, like most humans, are susceptible. This study increases our understanding of the differences in susceptibility to SARS-CoV-2 infection among primates.  相似文献   
957.
Li  Fupeng  Wu  Baoduo  Yan  Lin  Qin  Xiaowei  Lai  Jianxiong 《Journal of plant research》2021,134(6):1323-1334
Journal of Plant Research - The Theobroma cacao presents a wide diversity in pod color among different cultivars. Although flavonoid biosynthesis has been studied in many plants, molecular...  相似文献   
958.
Emerging data show a rise in colorectal cancer (CRC) incidence in young men and women that is often chemoresistant. One potential risk factor is an alteration in the microbiome. Here, we investigated the role of TGF-β signaling on the intestinal microbiome and the efficacy of chemotherapy for CRC induced by azoxymethane and dextran sodium sulfate in mice. We used two genotypes of TGF-β-signaling-deficient mice (Smad4+/? and Smad4+/?Sptbn1+/?), which developed CRC with similar phenotypes and had similar alterations in the intestinal microbiome. Using these mice, we evaluated the intestinal microbiome and determined the effect of dysfunctional TGF-β signaling on the response to the chemotherapeutic agent 5-Fluoro-uracil (5FU) after induction of CRC. Using shotgun metagenomic sequencing, we determined gut microbiota composition in mice with CRC and found reduced amounts of beneficial species of Bacteroides and Parabacteroides in the mutants compared to the wild-type (WT) mice. Furthermore, the mutant mice with CRC were resistant to 5FU. Whereas the abundances of E. boltae, B.dorei, Lachnoclostridium sp., and Mordavella sp. were significantly reduced in mice with CRC, these species only recovered to basal amounts after 5FU treatment in WT mice, suggesting that the alterations in the intestinal microbiome resulting from compromised TGF-β signaling impaired the response to 5FU. These findings could have implications for inhibiting the TGF-β pathway in the treatment of CRC or other cancers.  相似文献   
959.
Understanding animal foraging ecology requires large sample sizes spanning broad environmental and temporal gradients. For pollinators, this has been hampered by the laborious nature of morphologically identifying pollen. Identifying pollen from urban environments is particularly difficult due to the presence of diverse ornamental species associated with consumer horticulture. Metagenetic pollen analysis represents a potential solution to this issue. Building upon prior laboratory and bioinformatic methods, we applied quantitative multilocus metabarcoding to characterize the foraging ecology of honeybee colonies situated in urban, suburban, mixed suburban–agricultural and rural agricultural sites in central Ohio, USA. In cross‐validating a subset of our metabarcoding results using microscopic palynology, we find strong concordance between the molecular and microscopic methods. Our results suggest that forage from the agricultural site exhibited decreased taxonomic diversity and temporal turnover relative to the urban and suburban sites, though the generalization of this observation will require replication across additional sites and cities. Our work demonstrates the power of honeybees as environmental samplers of floral community composition at large spatial scales, aiding in the distinction of taxa characteristically associated with urban or agricultural land use from those distributed ubiquitously across the sampled landscapes. Observed patterns of high forage diversity and compositional turnover in our more urban sites are likely reflective of the fine‐grain heterogeneity and high beta diversity of urban floral landscapes at the scale of honeybee foraging. This provides guidance for future studies investigating how relationships between urbanization and measures of pollinator health are mediated by variation in floral resource dynamics across landscapes.  相似文献   
960.
The liquid–liquid phase separation (LLPS) of Tau has been postulated to play a role in modulating the aggregation property of Tau, a process known to be critically associated with the pathology of a broad range of neurodegenerative diseases including Alzheimer''s Disease. Tau can undergo LLPS by homotypic interaction through self‐coacervation (SC) or by heterotypic association through complex‐coacervation (CC) between Tau and binding partners such as RNA. What is unclear is in what way the formation mechanisms for self and complex coacervation of Tau are similar or different, and the addition of a binding partner to Tau alters the properties of LLPS and Tau. A combination of in vitro experimental and computational study reveals that the primary driving force for both Tau CC and SC is electrostatic interactions between Tau‐RNA or Tau‐Tau macromolecules. The liquid condensates formed by the complex coacervation of Tau and RNA have distinctly higher micro‐viscosity and greater thermal stability than that formed by the SC of Tau. Our study shows that subtle changes in solution conditions, including molecular crowding and the presence of binding partners, can lead to the formation of different types of Tau condensates with distinct micro‐viscosity that can coexist as persistent and immiscible entities in solution. We speculate that the formation, rheological properties and stability of Tau droplets can be readily tuned by cellular factors, and that liquid condensation of Tau can alter the conformational equilibrium of Tau.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号