首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1093篇
  免费   87篇
  国内免费   7篇
  2023年   4篇
  2022年   18篇
  2021年   32篇
  2020年   29篇
  2019年   31篇
  2018年   23篇
  2017年   41篇
  2016年   36篇
  2015年   30篇
  2014年   64篇
  2013年   63篇
  2012年   88篇
  2011年   65篇
  2010年   53篇
  2009年   34篇
  2008年   50篇
  2007年   55篇
  2006年   44篇
  2005年   38篇
  2004年   33篇
  2003年   28篇
  2002年   43篇
  2001年   26篇
  2000年   35篇
  1999年   18篇
  1998年   15篇
  1997年   15篇
  1996年   10篇
  1995年   11篇
  1994年   5篇
  1993年   9篇
  1992年   15篇
  1991年   10篇
  1990年   12篇
  1989年   13篇
  1988年   12篇
  1987年   4篇
  1986年   7篇
  1985年   9篇
  1983年   3篇
  1981年   5篇
  1977年   2篇
  1975年   2篇
  1974年   3篇
  1973年   5篇
  1972年   5篇
  1971年   9篇
  1969年   4篇
  1968年   6篇
  1966年   4篇
排序方式: 共有1187条查询结果,搜索用时 31 毫秒
51.
The inclusion of a genetic risk score (GRS) can modify the risk prediction of coronary artery disease (CAD), providing an advantage over the use of traditional models. The predictive value of the genetic information on the recurrence of major adverse cardiovascular events (MACE) remains controversial. A total of 33 genetic variants previously associated with CAD were genotyped in 1587 CAD patients from the GENEMACOR study. Of these, 18 variants presented an hazard ratio >1, so they were selected to construct a weighted GRS (wGRS). MACE discrimination and reclassification were evaluated by C-Statistic, Net Reclassification Index and Integrated Discrimination Improvement methodologies. After the addition of wGRS to traditional predictors, the C-index increased from 0.566 to 0.572 (p=0.0003). Subsequently, adding wGRS to traditional plus clinical risk factors, this model slightly improved from 0.620 to 0.622 but with statistical significance (p=0.004). NRI showed that 17.9% of the cohort was better reclassified when the primary model was associated with wGRS. The Kaplan-Meier estimator showed that, at 15-year follow-up, the group with a higher number of risk alleles had a significantly higher MACE occurrence (p=0.011). In CAD patients, wGRS improved MACE risk prediction, discrimination and reclassification over the conventional factors, providing better cost-effective therapeutic strategies.  相似文献   
52.
Ciliary beat frequency is primarily regulated by outer arm dyneins (22 S dynein). Chilcote and Johnson (Chilcote, T. J., and Johnson, K. A. (1990) J. Biol. Chem. 256, 17257-17266) previously studied isolated Tetrahymena 22 S dynein, identifying a protein p34, which showed cAMP-dependent phosphorylation. Here, we characterize the molecular biochemistry of p34 further, demonstrating that it is the functional ortholog of the 22 S dynein regulatory light chain, p29, in Paramecium. p34, thiophosphorylated in isolated axonemes in the presence of cAMP, co-purified with 22 S dynein and not with inner arm dynein (14 S dynein). Isolated 22 S dynein containing phosphorylated p34 showed approximately 70% increase in in vitro microtubule translocation velocity compared with its unphosphorylated counterpart. Extracted p34 rebound to isolated 22 S dynein from either Tetrahymena or Paramecium but not to 14 S dynein from either ciliate. Binding of radiolabeled p34 to 22 S dynein was competitive with p29. Phosphorylated p34 was not present in axonemes isolated from a mutant lacking outer arms. Two-dimensional gel electrophoresis followed by phosphorimaging revealed at least five phosphorylated p34-related spots, consistent with multiple phosphorylation sites in p34 or perhaps multiple isoforms of p34. These new features suggest that a class of outer arm dynein light chains including p34 regulates microtubule sliding velocity and consequently ciliary beat frequency through phosphorylation.  相似文献   
53.
GTP plus water mimic ATP in the active site of protein kinase CK2   总被引:7,自引:0,他引:7  
The structures of the catalytic subunit of protein kinase CK2 from Zea mays complexed with Mg2+ and with analogs of ATP or GTP were determined to 2.2 A resolution. Unlike most other protein kinases, CK2 from various sources shows 'dual-cosubstrate specificity', that is, the ability to efficiently use either ATP or GTP as a cosubstrate. The structures of these complexes demonstrate that water molecules are critical to switch the active site of CK2 from an ATP- to a GTP-compatible state. An understanding of the structural basis of dual-cosubstrate specificity may help in the design of drugs that target CK2 or other kinases with this property.  相似文献   
54.
A total of 103 cephalopod paralarvae were sampled during June 1995 in Galician waters (NW Spain). Samples were taken with Bongo nets of 300 and 500 m mesh size at 48 sampling stations along 10 transverse transects ranging from 80 to 600 m water depth. Paralarvae of loliginid squid were most abundant (40%). The Rhynchoteuthion paralarvae of ommastrephid squid accounted for 25%, whereas sepiolids comprised 23% of the total sample. Octopods were scarce, at only 6.6%. Other cephalopod families accounted for 5%. Sizes of paralarvae ranged from 1.0 to 7.1 mm mantle length. Temperature and salinity distribution showed the presence of an intense upwelling during the survey period. The sampling data obtained before and during the presence of upwelled water off Rias of Pontevedra and Vigo (southern zone) showed that paralarval cephalopod abundance and distribution were closely related to the upwelled Eastern North-Atlantic Central Water (ENACW).   相似文献   
55.
Peroxisome proliferator-activated receptors (PPARs) are a subgroup of the superfamily of nuclear receptors, with three distinct main types: alpha, beta and gamma (subdivided into gamma(1) and gamma(2)). Recently, the presence of PPARgamma has been reported in human islets. Whether other PPAR types can be found in human islets, how islet PPARgamma mRNA expression is regulated by the metabolic milieu, their role in insulin secretion, and the effects of a PPARgamma agonist are not known. In this study, human pancreatic islets were prepared by collagenase digestion and density gradient purification from nonobese adult donors. The presence of PPAR mRNAs was assessed by RT-PCR, and the effect was evaluated of exposure for up to 24 h to either 22.2 mmol/l glucose and/or 0.25, 0.5, or 1.0 mmol/l long-chain fatty acid mixture (oleate to palmitate, 2:1). PPARbeta and, to a greater extent, total PPARgamma and PPARgamma(2) mRNAs were expressed in human islets, whereas PPARalpha mRNA was not detected. Compared with human adipose tissue, PPARgamma mRNA was expressed at lower levels in the islets, and PPARbeta at similar levels. The expression of PPARgamma(2) mRNA was not affected by exposure to 22.2 mmol/l glucose, whereas it decreased markedly and time-dependently after exposure to progressively higher free fatty acids (FFA). This latter effect was not affected by the concomitant presence of high glucose. Exposure to FFA caused inhibition of insulin mRNA expression, glucose-stimulated insulin release, and reduction of islet insulin content. The PPARgamma agonists rosiglitazone and 15-deoxy-Delta-(12,14)prostaglandin J(2) prevented the cytostatic effect of FFA as well as the FFA-induced changes of PPAR and insulin mRNA expression. In conclusion, this study shows that PPARgamma mRNA is expressed in human pancreatic islets, with predominance of PPARgamma(2); exposure to FFA downregulates PPARgamma(2) and insulin mRNA expression and inhibits glucose-stimulated insulin secretion; exposure to PPARgamma agonists can prevent these effects.  相似文献   
56.
Certain pathogenic trypanosomatids are highly dependent on glycolysis for ATP production, and hence their glycolytic enzymes, including glycerol-3-phosphate dehydrogenase (GPDH), are considered attractive drug targets. The ternary complex structure of Leishmania mexicana GPDH (LmGPDH) with dihydroxyacetone phosphate (DHAP) and NAD(+) was determined to 1.9A resolution as a further step towards understanding this enzyme's mode of action. When compared with the apo and binary complex structures, the ternary complex structure shows an 11 degrees hinge-bending motion of the C-terminal domain with respect to the N-terminal domain. In addition, residues in the C-terminal domain involved in catalysis or substrates binding show significant movements and a previously invisible five-residue loop region becomes well ordered and participates in NAD(+) binding. Unexpectedly, DHAP and NAD(+) appear to form a covalent bond, producing an adduct in the active site of LmGPDH. Modeling a ternary complex glycerol 3-phosphate (G3P) and NAD(+) with LmGPDH identified ten active site residues that are highly conserved among all GPDHs. Two lysine residues, Lys125 and Lys210, that are presumed to be critical in catalysis, were mutated resulting in greatly reduced catalytic activity. Comparison with other structurally related enzymes found by the program DALI suggested Lys210 as a key catalytic residue, which is located on a structurally conserved alpha-helix. From the results of site-directed mutagenesis, molecular modeling and comparison with related dehydrogenases, a catalytic mechanism of LmGPDH and a possible evolutionary scenario of this group of dehydrogenases are proposed.  相似文献   
57.
58.
Zanotti G  Guerra C 《FEBS letters》2003,534(1-3):7-10
We suggest that the three-dimensional architecture of globular proteins can be described in terms of tensegrets, i.e. structural elements that are held together through attractive and repulsive forces. Hard elements of tensegrets are represented by secondary structure elements, i.e. alpha-helices and beta-strands, while the role of elastic elements is played by attractive and repulsive atomic forces. Characteristics of tensegrets is that they can auto-assemble and that they respond to changes of tension in some part of the entire object through a deformation in another part, thus partially preserving their structure, despite their deformation. This latter property well explains both the folding process and the behavior of globular proteins under mild denaturing conditions, as revealed by the molten globule state.  相似文献   
59.
Prominent endosomal and lysosomal changes are an invariant feature of neurons in sporadic Alzheimer's disease (AD). These changes include increased levels of lysosomal hydrolases in early endosomes and increased expression of the cation-dependent mannose 6-phosphate receptor (CD-MPR), which is partially localized to early endosomes. To determine whether AD-associated redistribution of lysosomal hydrolases resulting from changes in CD-MPR expression affects amyloid precursor protein (APP) processing, we stably transfected APP-overexpressing murine L cells with human CD-MPR. As controls for these cells, we also expressed CD-MPR trafficking mutants that either localize to the plasma membrane (CD-MPRpm) or to early endosomes (CD-MPRendo). Expression of CD-MPR resulted in a partial redistribution of a representative lysosomal hydrolase, cathepsin D, to early endosomal compartments. Turnover of APP and secretion of sAPPalpha and sAPPbeta were not altered by overexpression of any of the CD-MPR constructs. However, secretion of both human Abeta40 and Abeta42 into the growth media nearly tripled in CD-MPR- and CD-MPRendo-expressing cells when compared with parental or CD-MPRpm-expressing cells. Comparable increases were confirmed for endogenous mouse Abeta40 in L cells expressing these CD-MPR constructs but not overexpressing human APP. These data suggest that redistribution of lysosomal hydrolases to early endocytic compartments mediated by increased expression of the CD-MPR may represent a potentially pathogenic mechanism for accelerating Abeta generation in sporadic AD, where the mechanism of amyloidogenesis is unknown.  相似文献   
60.
As potential autocrine or paracrine factors, extracellular nucleotides are known to be important regulators of renal ion transporters by activating cell surface receptors and intracellular signaling pathways. We investigated the influence of extracellular adenine nucleotides on Na+/H+ exchanger isoform 3 (NHE3) activity in A6-NHE3 cells. This is a polarized cell line obtained by stable transfection of A6 cells with the cDNA encoding the rat isoform of NHE3, which is expressed on the apical membrane. Basolateral addition of the P2Y(1) agonist, 2-MeSADP, induced an inhibition of NHE3 activity, which was prevented by preincubation with selective P2Y(1) antagonists, MRS 2179 (N6-methyl-2'-deoxyadenosine-3',5'-bisphosphate) and MRS 2286 (2-[2-(2-chloro-6-methylamino-purin-9-yl)-ethyl]-propane-1,3-bisoxy(diammoniumphosphate)). NHE3 activity was also significantly inhibited by ATP and ATP-gamma-S but not by UTP. 2-MeSADP induced a P2Y(1) antagonist-sensitive increase in both [Ca2+]i and cAMP production. Pre-incubation with a PKC inhibitor, Calphostin C, or the calcium chelator BAPTA-AM, had no effect on the 2-MeSADP-dependent inhibition of NHE3 activity, whereas this inhibition was reversed by either incubation with the PKA inhibitor H89 or by mutation of two PKA target serines (S552 and S605) on NHE3. Pre-incubation of the A6-NHE3 cells with the synthetic peptide, Ht31, which prevents the binding between AKAPs and the regulatory PKA subunits RII, also prevented the 2-MeSADP-induced inhibition of NHE3. We conclude that only the cAMP/PKA pathway is involved in the inhibition of NHE3 activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号