首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12213篇
  免费   776篇
  国内免费   8篇
  12997篇
  2024年   22篇
  2023年   49篇
  2022年   152篇
  2021年   232篇
  2020年   131篇
  2019年   205篇
  2018年   295篇
  2017年   244篇
  2016年   426篇
  2015年   615篇
  2014年   759篇
  2013年   799篇
  2012年   1086篇
  2011年   1053篇
  2010年   649篇
  2009年   499篇
  2008年   792篇
  2007年   679篇
  2006年   626篇
  2005年   564篇
  2004年   576篇
  2003年   455篇
  2002年   365篇
  2001年   355篇
  2000年   327篇
  1999年   227篇
  1998年   89篇
  1997年   77篇
  1996年   49篇
  1995年   49篇
  1994年   38篇
  1993年   29篇
  1992年   83篇
  1991年   54篇
  1990年   44篇
  1989年   48篇
  1988年   27篇
  1987年   28篇
  1986年   21篇
  1985年   23篇
  1984年   13篇
  1983年   15篇
  1982年   12篇
  1981年   12篇
  1980年   11篇
  1979年   9篇
  1978年   15篇
  1975年   13篇
  1974年   11篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
81.
Conversion of synthesis gas (CO and H2) to ethanol can be an alternative, promising technology to produce biofuels from renewable biomass. To distinguish microbial utilization of carbon source between fructose and synthesis gas CO and to evaluate biological production of ethanol from CO, we adopted the 13C-enrichment of the CO substrate and hypothesized that the residual increase in δ13C of the cell biomass would reflect the increased contribution of 13C-enriched CO. Addition of synthesis gas to live culture medium for ethanol fermentation by Clostridum ljungdahlii increased the microbial growth and ethanol production. Despite the high 13C-enrichment in CO (99 atom % 13C), however, microbial δ13C increased relatively small compared to the microbial growth. The uptake efficiency of CO estimated using the isotope mass balance equation was also very low: 0.0014 % for the low CO and 0.0016 % for the high CO treatment. Furthermore, the fast production of ethanol in the early stage indicated that the presence of sugar in fermentation medium would limit the utilization of CO as a carbon source by C. ljungdahlii.  相似文献   
82.
Microvesicles (MVs, also known as exosomes, ectosomes, microparticles) are released by various cancer cells, including lung, colorectal, and prostate carcinoma cells. MVs released from tumor cells and other sources accumulate in the circulation and in pleural effusion. Although recent studies have shown that MVs play multiple roles in tumor progression, the potential pathological roles of MV in pleural effusion, and their protein composition, are still unknown. In this study, we report the first global proteomic analysis of highly purified MVs derived from human nonsmall cell lung cancer (NSCLC) pleural effusion. Using nano‐LC–MS/MS following 1D SDS‐PAGE separation, we identified a total of 912 MV proteins with high confidence. Three independent experiments on three patients showed that MV proteins from PE were distinct from MV obtained from other malignancies. Bioinformatics analyses of the MS data identified pathologically relevant proteins and potential diagnostic makers for NSCLC, including lung‐enriched surface antigens and proteins related to epidermal growth factor receptor signaling. These findings provide new insight into the diverse functions of MVs in cancer progression and will aid in the development of novel diagnostic tools for NSCLC.  相似文献   
83.
Xylose utilization is inhibited by glucose uptake in xylose-assimilating yeasts, including Candida tropicalis, resulting in limitation of xylose uptake during the fermentation of glucose/xylose mixtures. In this study, a heterologous xylose transporter gene (At5g17010) from Arabidopsis thaliana was selected because of its high affinity for xylose and was codon-optimized for functional expression in C. tropicalis. The codon-optimized gene was placed under the control of the GAPDH promoter and was integrated into the genome of C. tropicalis strain LXU1 which is xyl2-disrupted and NXRG (codon-optimized Neurospora crassa xylose reductase) introduced. The xylose uptake rate was increased by 37–73 % in the transporter expression-enhanced strains depending on the glucose/xylose mixture ratio. The recombinant strain LXT2 in 500-mL flask culture using glucose/xylose mixtures showed a xylose uptake rate that was 29 % higher and a xylitol volumetric productivity (1.14 g/L/h) that was 25 % higher than the corresponding rates for control strain LXU1. Membrane protein extraction and Western blot analysis confirmed the successful heterologous expression and membrane localization of the xylose transporter in C. tropicalis.  相似文献   
84.
Highlights? Two-way modulations of adipose VEGF were generated with aP2-Cre transgene ? Adipose VEGF KO reduces vasculature, increases hypoxia and inflammation in fat ? Adipose VEGF KO accelerates the development of metabolic disease in high-fat diet ? Induced adipose VEGF has opposite effect on fat and restores metabolic homeostasis  相似文献   
85.
Mutations in the LMNA gene, which encodes lamin A and C (lamin A/C), cause a diverse spectrum of tissue-selective diseases termed laminopathies. The most prevalent form affects striated muscles as dilated cardiomyopathy with variable skeletal muscle involvement, which includes autosomal Emery-Dreifuss muscular dystrophy. Mechanisms underlying the disease pathogenesis are beginning to be understood and they point toward defects in cell signaling. We therefore assessed putative signaling defects in a mouse model carrying a point mutation in Lmna (LmnaH222P/H222P) that faithfully recapitulates human Emery-Dreifuss muscular dystrophy. We found that AKT-mechanistic target of rapamycin (MTOR) signaling was hyperactivated in hearts of LmnaH222P/H222P mice and that reducing MTOR activity by pharmacological intervention ameliorated cardiomyopathy. Given the central role of MTOR in regulating autophagy, we assessed fasting-induced autophagic responses and found that they were impaired in hearts of these mice. Moreover, the improved heart function associated with pharmacological blockade of MTOR was correlated with enhanced autophagy. These findings demonstrated that signaling defects that impair autophagy underlie pathogenesis of dilated cardiomyopathy arising from LMNA mutation.  相似文献   
86.
Escherichia coli Hsp31, encoded by hchA, is a heat-inducible molecular chaperone. We found that Hsp31 undergoes a conformational change via temperature-induced unfolding, generating a high molecular weight (HMW) form with enhanced chaperone activity. Although it has previously been reported that some subunits of the Hsp31 crystal structure show structural heterogeneity with increased hydrophobic surfaces, Hsp31 basically forms a dimer. We found that a C-terminal deletion (CΔ19) of Hsp31 exhibited structurally and functionally similar characteristics to that of the HMW form. Both the CΔ19 and HMW forms achieved a structure with considerably more β-sheets and less α-helices than the native dimeric form, exposing a portion of its hydrophobic surfaces. The structural alterations were determined from its spectral changes in circular dichroism, intrinsic fluorescence of tryptophan residues, and fluorescence of bis-ANS binding to a hydrophobic surface. Interestingly, during thermal transition, the dimeric Hsp31 undergoes a conformational change to the HMW species via the CΔ19 structure, as monitored with near-UV CD spectrum, implying that the CΔ19 resembles an intermediate state between the dimer and the HMW form. From these results, we propose that Hsp31 transforms itself into a fully functional chaperone by altering its tertiary and quaternary structures.  相似文献   
87.
In this study, nuclear magnetic resonance techniques coupled with multivariate data analysis were used for the metabolic profiling of mycelia and fruiting bodies of the entomopathogenic fungi, Cordyceps bassiana according to developmental stages. A direct extraction method using two deuterated solvents of D2O and CDCl3 was used to investigate the relative levels of identified metabolites in each extraction condition in the mycelium and fruiting body formation stages. There was a clear separation among mycelia and fruiting bodies with various developmental stages in partial least-squares discriminant analysis (PLS-DA) derived score plots. During the transition from mycelia to fruiting bodies, the major metabolic change observed was the conversion of glucose to mannitol, and beauvericin to phenylalanine and 1-hydroxyisovaleric acid. In the developmental stages of fruiting bodies studied, there was a clear separation between stage 3 and the other stages in PLS-DA derived score plots. Nineteen compounds including 13 amino acids, 2 nucleosides, 3 organic acids, and glucose showed the highest levels in stage 3 fruiting bodies. The flavonoid content in the fruiting bodies showed similar levels during stages 1, 2, and 3, whereas the level at stage 4 was significantly decreased compared to the other stages. Results suggest that the fruiting body of C. bassiana is richer in natural resources at stage 3 compared to the other fruiting body stages due to its high abundance of compounds including total flavonoids. The metabolome information acquired in this study can be useful criteria for the quality control of commercial use of C. bassiana.  相似文献   
88.
Remarkable improvements in the electrochemical performance of Si materials for Li‐ion batteries have been recently achieved, but the inherent volume change of Si still induces electrode expansion and external cell deformation. Here, the void structure in Si‐encapsulating hollow carbons is optimized in order to minimize the volume expansion of Si‐based anodes and improve electrochemical performance. When compared to chemical etching, the hollow structure is achieved via electroless etching is more advanced due to the improved electrical contact between carbon and Si. Despite the very thick electrodes (30 ~ 40 μm), this results in better cycle and rate performances including little capacity fading over 50 cycles and 1100 mA h g?1 at 2C rate. Also, an in situ dilatometer technique is used to perform a comprehensive study of electrode thickness change, and Si‐encapsulating hollow carbon mitigates the volume change of electrodes by adoption of void space, resulting in a small volume increase of 18% after full lithiation corresponding with a reversible capacity of about 2000 mA h g?1.  相似文献   
89.
The ratio of matrix metalloproteinases (MMPs) to the tissue inhibitors of metalloproteinases (TIMPs) in wounded tissues strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and scar formation. Some amphibians (i.e. axolotl/newt) demonstrate complete regeneration of missing or wounded digits and even limbs; MMPs play a critical role during amphibian regeneration. Conversely, mammalian wound healing re-establishes tissue integrity, but at the expense of scar tissue formation. The differences between amphibian regeneration and mammalian wound healing can be attributed to the greater ratio of MMPs to TIMPs in amphibian tissue. Previous studies have demonstrated the ability of MMP1 to effectively promote skeletal muscle regeneration by favoring extracellular matrix (ECM) remodeling to enhance cell proliferation and migration. In this study, MMP1 was administered to the digits amputated at the mid-second phalanx of adult mice to observe its effect on digit regeneration. Results indicated that the regeneration of soft tissue and the rate of wound closure were significantly improved by MMP1 administration, but the elongation of the skeletal tissue was insignificantly affected. During digit regeneration, more mutipotent progenitor cells, capillary vasculature and neuromuscular-related tissues were observed in MMP1 treated tissues; moreover, there was less fibrotic tissue formed in treated digits. In summary, MMP1 was found to be effective in promoting wound healing in amputated digits of adult mice.  相似文献   
90.

Introduction

To assess whether the value of CYFRA21-1 in the aspirates of ultrasonography-guided fine-needle aspiration biopsy (US-FNAB) can contribute to improving the performances of US-FNAB in the diagnosis of axillary lymph node (LN) metastasis in breast cancer patients.

Methods

US-FNAB was performed in 156 axillary LNs in 152 breast cancer patients (mean age: 51.4 years, range: 17–92 years). Concentrations of CYFRA21-1 were measured from washouts of the syringe used during US-FNAB. Tumor marker concentrations, US-FNAB, intraoperative sentinel node biopsy (SNB), and surgical pathology results were reviewed and analyzed. For comparison, the values of CEA and CA15-3 were also measured from washouts.

Results

Among the 156 LNs, 75 (48.1%) were benign, and 81 (51.9%) were metastases. Mean concentrations of CYFRA21-1 were significantly higher in metastasis compared to benign LNs (P<0.001). US-FNAB combined to CYFRA21-1 showed significantly higher sensitivity, NPV, and accuracy compared to US-FNAB alone (all values P<0.05). All diagnostic indices of US-FNAB combined to CYFRA21-1 were significantly higher compared to US-FNAB combined with CEA or CA15-3 (all P<0.001). Of the 28 metastatic LNs which showed metastasis on SNB, CYFRA21-1 showed higher positive rate of 75.0% (CEA or CA15-3∶60.7%, P = 0.076).

Conclusion

Measuring CYFRA 21-1 concentrations from US-FNAB aspirates improves sensitivity, NPV, and accuracy of US-FNAB alone, and may contribute to reducing up to 75.0% of unnecessary intraoperative SNB. Compared to CEA or CA15-3, CYFRA21-1 shows significantly higher performances when combined to US-FNAB in the preoperative diagnosis of LN metastasis in breast cancer patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号