首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114309篇
  免费   13609篇
  国内免费   645篇
  2021年   947篇
  2018年   1161篇
  2017年   1092篇
  2016年   1424篇
  2015年   1825篇
  2014年   2220篇
  2013年   2792篇
  2012年   3206篇
  2011年   3135篇
  2010年   2079篇
  2009年   2012篇
  2008年   2583篇
  2007年   2524篇
  2006年   2476篇
  2005年   2286篇
  2004年   2178篇
  2003年   2212篇
  2002年   2160篇
  2001年   9706篇
  2000年   9568篇
  1999年   7250篇
  1998年   1654篇
  1997年   1830篇
  1996年   1612篇
  1995年   1443篇
  1994年   1333篇
  1993年   1268篇
  1992年   4812篇
  1991年   4546篇
  1990年   4008篇
  1989年   4019篇
  1988年   3618篇
  1987年   3095篇
  1986年   2783篇
  1985年   2685篇
  1984年   1978篇
  1983年   1732篇
  1982年   1231篇
  1981年   983篇
  1980年   913篇
  1979年   1762篇
  1978年   1362篇
  1977年   1199篇
  1976年   1028篇
  1975年   1149篇
  1974年   1166篇
  1973年   1162篇
  1972年   1033篇
  1971年   955篇
  1970年   822篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
The first 46 amino acids (aa) of the N terminus of the rabbit heart (RH) L-type cardiac Ca(2+) channel alpha(1C) subunit are crucial for the stimulating action of protein kinase C (PKC) and also hinder channel gating (Shistik, E., Ivanina, T., Blumenstein, Y., and Dascal, N. (1998) J. Biol. Chem. 273, 17901-17909). The mechanism of PKC action and the location of the PKC target site are not known. Moreover, uncertainties in the genomic sequence of the N-terminal region of alpha(1C) leave open the question of the presence of RH-type N terminus in L-type channels in mammalian tissues. Here, we demonstrate the presence of alpha(1C) protein containing an RH-type initial N-terminal segment in rat heart and brain by using a newly prepared polyclonal antibody. Using deletion mutants of alpha(1C) expressed in Xenopus oocytes, we further narrowed down the part of the N terminus crucial for both inhibitory gating and for PKC effect to the first 20 amino acid residues, and we identify the first 5 aa as an important determinant of PKC action and of N-terminal effect on gating. The absence of serines and threonines in the first 5 aa and the absence of phosphorylation by PKC of a glutathione S-transferase-fusion protein containing the initial segment suggest that the effect of PKC does not arise through a direct phosphorylation of this segment. We propose that PKC acts by attenuating the inhibitory action of the N terminus via phosphorylation of a remote site, in the channel or in an auxiliary protein, that interacts with the initial segment of the N terminus.  相似文献   
202.
203.
A sequence-specific genomic delivery system for the correction of chromosomal mutations was designed by incorporating two different binding domains into a single-stranded oligonucleotide. A repair domain (RD) contained the native sequence of the target region. A third strand-forming domain (TFD) was designed to form a triplex by Hoogsteen interactions. The design was based upon the premise that the RD will rapidly form a heteroduplex that is anchored synergistically by the TFD. Deoxyoligonucleotides were designed to form triplexes in the human adenosine deaminase (ADA) and p53 genes adjacent to known point mutations. Transfection of ADA-deficient human lymphocytes corrected the mutant sequence in 1-2% of cells. Neither the RD or TFD individually corrected the mutation. Transfection of p53 mutant human glioblastoma cells corrected the mutation and induced apoptosis in 7.5% of cells.  相似文献   
204.
The Oxidation of Aromatic Compounds by Fluorescent Pseudomonads   总被引:19,自引:7,他引:12  
  相似文献   
205.
206.
207.
The effect of griseofulvin treatment on the synthesis of cytochrome c oxidase was studied with the liver of the tadpole, Rana catesbeiana. (1) In the liver of tadpole treated with griseofulvin, a ferrochelatase inhibitor, the synthesis of heme a, but not cytochrome c oxidase protein, is inhibited. (2) The apocytochrome c oxidase which is formed in the liver of tadpole treated with griseofulvin is converted to the active holoenzyme by exogenously added heme a.  相似文献   
208.
209.
BRL-3A rat liver cells synthesize mature 7484-dalton rat insulin-like growth factor II (rIGF-II) as a approximately 22-kDa precursor, presumably prepro-rIGF-II. In the present study, we have biosynthetically labeled intact BRL-3A cells with [35S]cysteine and immunoprecipitated cell lysates and media with antisera to rIGF-II. A approximately 20-kDa protein was identified in immunoprecipitates of cell lysates having properties consistent with pro-rIGF-II. The approximately 20-kDa protein is precipitated by immune sera but not by nonimmune serum. Its immunoprecipitation is specifically inhibited by unlabeled rIGF-II but not by insulin. It is not precipitated from labeled lysates of a subclone of BRL-3A cells (BRL-3A2) that does not synthesize rIGF-II. The approximately 20-kDa protein is rapidly labeled intracellularly (10 min) but is not detected in BRL-3A media. In pulse-chase experiments, radioactivity in the approximately 20-kDa protein disappears during the chase and appears, at later times, in specifically immunoprecipitated approximately 19-, approximately 10-, approximately 8-, and approximately 7-kDa proteins in media and, to a limited extent, intracellularly. A protein with electrophoretic mobility identical to that of the approximately 20-kDa protein observed in cell lysates is immunoprecipitated from 35S-proteins whose synthesis is directed by BRL-3A RNA in a reticulocyte lysate cell-free translation system supplemented with microsomal membranes, and presumably arises by cotranslational removal of the signal peptide from approximately 22-kDa prepro-rIGF-II. Processing of the approximately 20-kDa protein in intact BRL-3A cells to intermediate and mature rIGF-II species appears to occur at the time of secretion and/or shortly thereafter, with the different forms appearing at approximately the same time.  相似文献   
210.
1. It is well known that insulin has various effects on glucose transport and the Na,K-pump in muscles. It is also known to have some effects on the membrane potential--in general, insulin induces a hyperpolarization of the membrane in muscles. Furthermore, it is suggested that the actions of insulin are modified by changes in ionic surroundings. 2. In this review article, the actions of ionic surroundings and insulin on glucose transport in muscles are discussed; in particular, the effects of changes in extracellular and/or intracellular concentrations of Na, K, Ca and H ions will be mentioned. 3. The actions of ionic surroundings and insulin on the Na,K-pump in muscles are discussed; in particular, the effects of changes in extracellular an/or intracellular concentrations of Na, K, Ca and H ions will be examined. 4. The relationship between the actions of ionic surroundings and insulin are discussed. 5. In particular, the effects of changes in ionic surroundings on the insulin-induced hyperpolarization of the membrane are discussed by relating it to the Na,K-pump function. The relationship between the insulin-induced change in membrane potential and glucose transport will be also mentioned.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号