首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203541篇
  免费   20507篇
  国内免费   443篇
  224491篇
  2018年   2208篇
  2017年   2135篇
  2016年   2805篇
  2015年   3224篇
  2014年   3949篇
  2013年   5307篇
  2012年   5967篇
  2011年   6044篇
  2010年   4297篇
  2009年   3871篇
  2008年   5317篇
  2007年   5245篇
  2006年   5075篇
  2005年   4697篇
  2004年   4646篇
  2003年   4575篇
  2002年   4377篇
  2001年   13625篇
  2000年   13271篇
  1999年   10107篇
  1998年   2597篇
  1997年   2769篇
  1996年   2439篇
  1995年   2185篇
  1994年   2092篇
  1993年   2035篇
  1992年   7069篇
  1991年   6792篇
  1990年   6320篇
  1989年   6088篇
  1988年   5560篇
  1987年   4971篇
  1986年   4507篇
  1985年   4429篇
  1984年   3414篇
  1983年   2978篇
  1982年   2134篇
  1981年   1833篇
  1980年   1684篇
  1979年   3142篇
  1978年   2449篇
  1977年   2200篇
  1976年   1988篇
  1975年   2271篇
  1974年   2393篇
  1973年   2465篇
  1972年   2186篇
  1971年   1970篇
  1970年   1728篇
  1969年   1688篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
A soluble phosphoinositide-specific phospholipase C (PLC) was purified 58,000-fold from bovine brain. The enzyme, one of six distinct PLC activities detected in brain, accounted for approximately 15% of the soluble phosphatidylinositol-4,5-bisphosphate-phospholipase C (PIP2-PLC) activity in this tissue. The purification scheme included hydrophobic chromatography on phenyl-Sepharose and affinity chromatography on phosphatidylinositol-Sepharose (PI-Sepharose). The enzyme was specifically eluted from the PI-Sepharose with PI, calcium, and detergent. The purified PLC had an estimated molecular weight of 88,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and behaved as a monomeric protein during sedimentation on glycerol gradients. The enzyme required calcium for activity, exhibited a pH optimum of 6.5, and cleaved only phosphoinositides. The rates of PIP2 and phosphatidyl-4-monophosphate hydrolysis exceeded the rate of PI hydrolysis under all conditions tested. These properties are consistent with a potential role for this PLC in the early events involved in cellular calcium mobilization.  相似文献   
992.
The mechanism of cytotoxic action of 5-fluorodeoxyuridine (FdUrd) in mouse FM3A cells was investigated. We observed the FdUrd-induced imbalance of intracellular deoxyribonucleoside triphosphate (dNTP) pools and subsequent double strand breaks in mature DNA, accompanied by cell death. The imbalance of dNTP pools was maximal at 8 h after 1 microM FdUrd treatment; a depletion of dTTP and dGTP pools and an increase in the dATP pool were observed. The addition of FdUrd in culture medium induced strand breaks in DNA, giving rise to a 90 S peak by alkaline sucrose gradient sedimentation. The loss of cell viability and colony-forming ability occurred at about 10 h. DNA double strand breaks as measured by the neutral elution method were also observed in FdUrd-treated cells about 10 h after the addition. These results lead us to propose that DNA double strand breaks play an important role in the mechanism of FdUrd-mediated cell death. A comparison of the ratio of single and double strand breaks induced by FdUrd to that observed following radiation suggested that FdUrd produced double strand breaks exclusively. Cycloheximide inhibited both the production of DNA double strand breaks and the FdUrd-induced cell death. An activity that can induce DNA double strand breaks was detected in the lysate of FdUrd-treated FM3A cells but not in the untreated cells. This suggests that FdUrd induces the cellular DNA double strand breaking activity. The FdUrd-induced DNA strand breaks and cell death appear to occur in the S phase. Our results indicate that imbalance of the dNTP pools is a trigger for double strand DNA break and cell death.  相似文献   
993.
Metabolism of 32-hydroxy-24,25-dihydrolanosterol (lanost-8-ene-3 beta,32-diol), a posturated intermediate of the 14 alpha-demethylation (removal of C-32) of 24,25-dihydrolanosterol (lanost-8-en-3 beta-ol), by a reconstituted system consisting of yeast cytochrome P-450 which catalyzes lanosterol 14 alpha-demethylation (cytochrome P-45014DM) (Yoshida, Y., and Aoyama, Y. (1984) J. Biol. Chem. 259, 1655-1660 and Aoyama, Y., Yoshida, Y., and Sato, R. (1984) J. Biol. Chem. 259, 1661-1666) and NADPH-cytochrome P-450 reductase was studied. The reconstituted system converted both 32-hydroxy-24,25-dihydrolanosterol and 24,25-dihydrolanosterol to 4,4-dimethyl-5 alpha-cholesta-8,14-dien-3 beta-ol, the 14 alpha-demethylated product of the latter. The metabolism of these compounds was inhibited by a low concentration of ketoconazole which is a potent cytochrome P-45014DM inhibitor. Affinity of cytochrome P-45014DM for 32-hydroxy-24,25-dihydrolanosterol was about 20 times higher than for 24,25-dihydrolanosterol and the cytochrome metabolized the former about 4 times faster than the latter under the experimental conditions. Spectral analysis suggested that the 32-hydroxyl group of 32-hydroxy-24,25-dihydrolanosterol interacted with the heme iron of the oxidized cytochrome and this interaction might support the high affinity of this compound for the cytochrome. These lines of evidence indicate that 32-hydroxy-24,25-dihydrolanosterol is the intermediate of the 14 alpha-demethylation of 24,25-dihydrolanosterol by cytochrome P-45014DM. It is also clear that the cytochrome catalyzes further metabolism of the 32-hydroxylated intermediate to the 14 alpha-demethylated product with higher efficiency than the 32-hydroxylation of the substrate. Cytochrome P-45014DM is thus classified as lanosterol C14-C32 lyase.  相似文献   
994.
Fodrin, a non-erythrocyte spectrin-like protein, has been purified from bovine brain and found to be phosphorylated by the cyclic AMP-dependent protein kinase with a maximal stoichiometry of 1.02 +/- 0.06 mol of phosphate/mol of fodrin dimer (n = 4). This phosphorylation was not affected by the presence of actin and calmodulin. The phosphorylation of fodrin was found to occur exclusively at serine residues on the beta subunit. Two-dimensional thin layer electrophoresis and chromatography of a tryptic digest of phosphorylated fodrin showed one major phosphopeptide and a few minor ones. We have previously reported that nonphosphorylated fodrin is capable of stimulating the smooth muscle actomyosin Mg2+-ATPase by 50-70% under a well-defined set of conditions such as a critical fodrin concentration and an optimal preincubation time (Wang, C., Ngai, P.K., Walsh, M.P., and Wang, J.H. (1987) Biochemistry 24, 1110-1117). We now report that phosphorylation of fodrin completely eliminates this stimulatory effect. However, phosphorylation of fodrin was able to compete with nonphosphorylated fodrin to result in the abolition of the stimulatory effect. Similarly, nonphosphorylated fodrin could overcome the inhibitory effect created by phosphorylated fodrin. The present results support the suggestion that the stimulation of the smooth muscle actomyosin Mg2+-ATPase by fodrin may be a physiological phenomenon and cyclic AMP may serve as a regulator for this effect.  相似文献   
995.
Calmodulin and calmodulin complexed with calcineurin phosphatase were trace labeled with [3H]acetic anhydride and the incorporation of [3H]acetate into each epsilon-amino lysine of calmodulin was measured. The relative reactivities of calmodulin lysines were higher in the presence of Ca2+ than in the presence of EGTA, and the order was: Lys-75 greater than Lys-94 greater than Lys-148 greater than or equal to Lys-77 greater than Lys-13 greater than or equal to Lys-21 greater than Lys-30. The changes in relative reactivity implied a change in conformation. When calmodulin was complexed with the phosphatase, Lys-21, Lys-77, and Lys-148 were most protected, implying that these residues are at or near the interaction sites or are conformationally perturbed by the interaction. Lys-30 and Lys-75 were slightly protected, lysine 13 showed no change, while lysine 94 significantly increased in reactivity. Comparison with results obtained from myosin light chain kinase using a similar technique (Jackson, A. E., Carraway, K. L., III, Puett, D., and Brew, K. (1986) J. Biol. Chem. 261, 12226-12232) reveals that calmodulin may interact with each of the two enzymes similarly at or near Lys-21, Lys-75, and Lys-148; one difference with phosphatase is that complex formation also involved Lys-77. These findings suggest that calmodulin interacts differently with its target enzymes.  相似文献   
996.
We have examined the effects of the "differentiating agent," sodium butyrate, on the induction of alkaline phosphatase in human colonic tumor cell line LS174T. Culture of these cells in the presence of 2 mM butyrate caused this activity to increase from less than 0.0001 unit/mg of protein to greater than 0.7 unit/mg of protein over an 8-day period. This induction proceeded in a nonlinear fashion with a lag time of 2-3 days occurring before enzymatic activity began to rise. These increases in activity were accompanied by elevations in the content of a placental-like isozyme of alkaline phosphatase as demonstrated by "Western" immunoblots. Dome formation, indicative of differentiation in cultured cells, also required 3 days treatment with butyrate before becoming evident. The rate of biosynthesis of the enzyme, examined using metabolic labeling with L-[35S]methionine and immunoprecipitation, was found to increase continuously between days 2 and 6 of butyrate treatment. "Northern" blot analysis indicated that treatment of these cells with butyrate caused greater than 20-fold induction of a 2700-base mRNA that hybridized to a cDNA probe for placental alkaline phosphatase. The mRNA for alkaline phosphatase produced by these cells upon butyrate treatment was approximately 300-400 bases smaller than the mRNA for alkaline phosphatase found in placenta. Human small intestine also contained two mRNAs that hybridized relatively weakly with the placental alkaline phosphatase probe. These results indicate that a placental alkaline phosphatase-like protein and mRNA are induced by butyrate in LS174T cells with a time course consistent with cellular differentiation preceding induction.  相似文献   
997.
The kinase and sugar phosphate exchange reactions of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were inactivated by treatment with 5'-p-fluorosulfonylbenzoyladenosine or 8-azido-ATP, but activity could be restored by the addition of dithiothreitol. This inactivation was accompanied by incorporation of 5'-p-sulfonylbenzoyl[8-14C]adenosine into the enzyme that was not released by the addition of dithiothreitol. The lack of effect of ATP analogs on the ATP/ADP exchange or on bisphosphatase activity and reversal of their effects on the kinase and sugar phosphate reactions by dithiothreitol suggest that 1) they reacted with sulfhydryl groups important for sugar phosphate binding in the kinase reaction, and 2) the inactivation of the kinase by these analogs involves a specific reaction that is not related to their general mechanism of attacking nucleotide-binding sites. In addition, alkylation of the enzymes' sulfhydryls with iodoacetamide prevented inactivation by 5'-p-fluorosulfonylbenzoyladenosine, suggesting that the same thiols were involved. o-Iodosobenzoate inactivated the kinase and sugar phosphate exchange; the inactivation was reversed by dithiothreitol; but there was no effect on the bisphosphatase or nucleotide exchange, indicating that oxidation occurred at the same sulfhydryl that are associated with sugar phosphate binding. ATP or ADP, but not fructose 6-phosphate, protected these groups from modification by 5'-p-fluorosulfonylbenzoyladenosine, 8-azido-ATP, and o-iodosobenzoate. ATP also induced dramatic changes in the circular dichroism spectrum of the enzyme, suggesting that adenine nucleotide protection of thiol groups resulted from changes in enzyme secondary structure. Analysis of cyanogen bromide fragments of 14C-carboxamidomethylated enzyme showed that all radioactivity was associated with cysteinyl residues in a single cyanogen bromide fragment. Three of these cysteinyl residues are clustered in a 38-residue region, which probably plays a role in maintaining the conformation of the kinase sugar phosphate-binding site.  相似文献   
998.
Euglena aquacobalamin reductase (NADPH: EC 1.6.99.-) was purified, and its subcellular distribution was studied to elucidate the mechanism of the conversion of hydroxocobalamin to 5'-deoxyadenosylcobalamin. The enzyme was found in the mitochondria. It was purified about 150-fold over the Euglena mitochondrial extract in a yield of 38%. The purified enzyme was homogeneous in polyacrylamide gel electrophoresis. Spectra of the purified enzyme showed that it was a flavoprotein. The molecular weight of the enzyme was calculated to be 66,000 by Sephadex G-100 gel filtration and 65,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was specific to NADPH with an apparent Km of 43 microM and to hydroxocobalamin with an apparent Km of 55 microM. The enzyme did not require FAD or FMN as a cofactor. The optimum pH and temperature were 7.0 and 40 degrees C, respectively.  相似文献   
999.
Proteolytic digests of biologically active fractions of recombinant human leukocyte interferon A expressed in large quantities in Escherichia coli were analyzed by fast atom bombardment mass spectrometry and high-performance liquid chromatography. The values observed in the mass spectra of digests of the major fraction of recombinant human leukocyte interferon A with trypsin and Staphylococcus aureus protease V8 accounted for 93% of the amino acid sequences of human leukocyte interferon A predicted from the nucleotide sequence of the gene encoding the protein, indicating that the major fraction of recombinant human leukocyte interferon A was expressed with the same amino acid sequence as that translated from the nucleotide sequence of the gene encoding the protein. Mass spectrometry of proteolytic digests of two minor fractions of recombinant human leukocyte interferon A and mass and amino acid analyses of their high-performance liquid chromatography fractions showed that the amino group of the N-terminal amino acid residue of interferon was in part acetylated, and the Cys-1 and Cys-98 residues were oxidized to cysteic acid or linked to glutathione. These findings suggest that amino acid residues in recombinant proteins prepared in large quantities in E. coli are modified post-translationally.  相似文献   
1000.
A cellular binding protein for 3,3',5-triiodo-L-thyronine (T3) was solubilized with 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS) from A431 human epidermoid carcinoma cells. The binding activity is T3 specific. Analysis of the equilibrium binding data indicated that the binding protein has one class of binding sites for T3 with a Kd of (17 +/- 3) nM and Bmax of (1.8 +/- 0.6) pmol/50 micrograms of protein. The pH optimum for binding is 6.8. The T3 binding protein elutes from Sephadex G-200 in an included peak which has a Stokes radius of 40 A and sediments on glycerol gradients at 3.7 S. By affinity labeling with [3,5-125I]thyroxine a protein with a molecular weight of 58,000 was specifically labeled. Its isoelectric point was determined to be 7.1, which is different from the reported pIs of other thyroid hormone binding proteins. p58 was successively purified to apparent homogeneity by chromatography on Sephadex G-200, QAE-Sephadex, SP-Sephadex, and hydroxylapatite. Approximately 50 micrograms of purified protein was obtained from 2.5 X 10(9) cells with a yield of 1.1%. The purified protein retains its binding activity. The specific binding activity is enriched by approximately 1000-fold. With the availability of a purified protein with T3 binding activity, it becomes possible to study its cellular function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号