首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9792篇
  免费   882篇
  国内免费   829篇
  2024年   17篇
  2023年   141篇
  2022年   296篇
  2021年   569篇
  2020年   399篇
  2019年   435篇
  2018年   425篇
  2017年   306篇
  2016年   434篇
  2015年   608篇
  2014年   782篇
  2013年   756篇
  2012年   924篇
  2011年   777篇
  2010年   541篇
  2009年   424篇
  2008年   460篇
  2007年   493篇
  2006年   407篇
  2005年   340篇
  2004年   302篇
  2003年   233篇
  2002年   201篇
  2001年   175篇
  2000年   156篇
  1999年   153篇
  1998年   71篇
  1997年   69篇
  1996年   72篇
  1995年   52篇
  1994年   63篇
  1993年   51篇
  1992年   75篇
  1991年   59篇
  1990年   39篇
  1989年   51篇
  1988年   29篇
  1987年   33篇
  1986年   24篇
  1985年   25篇
  1984年   8篇
  1983年   11篇
  1982年   3篇
  1981年   1篇
  1980年   5篇
  1979年   6篇
  1978年   1篇
  1970年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
271.
It has been demonstrated that nephrin inactivation plays a critical role in Angiotensin II (AngII)-induced podocyte damage both in in vitro and in vivo, but the underlying molecular mechanisms are still unclear. Recently, c-maf inducing protein (c-mip) has been identified as a key component in the molecular pathogenesis of acquired podocyte diseases. In this study, the role of c-mip on AngII-induced nephrin inactivation and podocyte damage was explored in a mouse podocyte cell line. AngII stimulation caused podocyte damage, presenting with a time and dose dependent cell apoptosis increment, and obvious reorganization of actin cytoskeleton, both of which was remarkably prevented by knockdown of c-mip (siCmip). In AngII stimulated podocyte, c-mip and Csk expressions increased obviously at protein level, and nephrin phosphorylation decreased while Cbp phosphorylation increased. AngII-induced Csk increment and nephrin inactivation was remarkably inhibited by siCmip treatment. AngII stimulation increased the interaction of c-mip and Csk, as well as Csk and Cbp. Notably, the binding of Csk to active form pY418 decreased while the binding of Csk to inactive form pY530 of Src kinase Fyn increased in AngII-stimulated podocyte. Nevertheless, c-mip knockdown prevented AngII-induced reduction of pY418 and increase of pY530. In addition, AngII stimulation significantly decreased the expression of phosphor-Akt (Ser473) and antiapoptotic protein Bcl-2, whereas increased the expression of apoptotic proteins caspase-3 and BAD, all of which were prevented by siCmip treatment. Taken together, our results demonstrated that AngII induced nephrin inactivation and podocyte damage by the novel podocyte protein c-mip through Csk–Cbp–Fyn signaling pathway.  相似文献   
272.
For a novel potential commercial chiral pesticide, an independent study on the fate characteristics and residues of each stereoisomer is essential if the application rates for the pesticide and human exposure are to be reduced. The absorption and translocation behavior of a chiral insecticide, cycloxaprid, in plants treated by root immersion and blade smearing was studied using 14C‐labeling tracer techniques. With the root treatment, total absorption of (1R;8S)‐cycloxaprid (RS) (12.39%) was much greater than that of (1S;8R)‐cycloxaprid (SR) (3.31%) at 192 h after treatment (HAT). The mass concentrations ( RS / SR ) of cycloxaprid in the roots, cotyledons, leaf 1, leaf 2, and leaf 3 were 37.0/16.8, 8.3/2.8, 11.7/6.5, 5.1/4.8, and 8.0/4.7 mg kg‐1 (fresh weight), respectively, at 192 HAT at an initial concentration 1.6 mg kg‐1. With the foliar application treatment, no significant difference was observed between the total absorption of RS (3.11%) and SR (4.03%) at the end of the treatment. Both acropetal and basipetal transport of absorbed 14C occurred and more than 71.83% of absorbed RS and 82.42% of SR remained in the treated leaf. Stereoselective absorption was observed during root uptake but not during foliar absorption. Chirality 25:686–691, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
273.
The accurate identification of protein structure class solely using extracted information from protein sequence is a complicated task in the current computational biology. Prediction of protein structural class for low-similarity sequences remains a challenging problem. In this study, the new computational method has been developed to predict protein structural class by fusing the sequence information and evolution information to represent a protein sample. To evaluate the performance of the proposed method, jackknife cross-validation tests are performed on two widely used benchmark data-sets, 1189 and 25PDB with sequence similarity lower than 40 and 25%, respectively. Comparison of our results with other methods shows that the proposed method by us is very promising and may provide a cost-effective alternative to predict protein structural class in particular for low-similarity data-sets.  相似文献   
274.
Meso-tetrakis(N-methyl pyridinium-4-yl)porphyrin (TMPyP) intercalates between the base-pairs of DNA at a low [TMPyP]/[DNA base] ratio in aqueous solutions and molecular crowding conditions, which is induced by the addition of Poly(ethylene glycol) (PEG). Studied DNA-binding drugs, including TMPyP, 9-aminoacridine, ethidium bromide, and DAPI (4′,6-diamidino-2-phenylindole) showed similar binding properties in the presence or absence of PEG molecules which is examined by circular and linear dichroism. According to the LDr (reduced linear dichroism) results of the binding drugs examined in this work, PEG molecules induced no significant change compared to their binding properties in aqueous buffering systems. These results suggest that the transition moments are not expected to be perturbed significantly by PEG molecules. In this study, the experimental conditions of PEG 8000 were maintained at 35% (v/v) of total reaction volume, which is equal to the optimal molar concentration (0.0536 M as final concentration for PEG 8000) to maintain suitable cell-like conditions. Therefore, there was no need to focus on the conformational changes of the DNA helical structure, such as forming irregular aggregate structures, induced by large quantities of molecular crowding media itself at this stage.  相似文献   
275.
No ideal serum biomarker currently exists for the early diagnosis of colorectal cancer (CRC). Magnetic bead‐based fractionation coupled with MALDI‐TOF MS was used to screen serum samples from CRC patients, healthy controls, and other cancer patients. A diagnostic model with five proteomic features (m/z 1778.97, 1866.16, 1934.65, 2022.46, and 4588.53) was generated using Fisher algorithm with best performance. The Fisher‐based model could discriminate CRC patients from the controls with 100% (46/46) sensitivity and 100% (35/35) specificity in the training set, 95.6% (43/45) sensitivity and 83.3% (35/42) specificity in the test set. We further validated the model with 94.4% (254/269) sensitivity and 75.5% (83/110) specificity in the external independent group. In other cancers group, the Fisher‐based model classified 25 of 46 samples (54.3%) as positive and the other 21 as negative. With FT‐ICR‐MS, the proteomic features of m/z 1778.97, 1866.16, 1934.65, and 2022.46, of which intensities decreased significantly in CRC, were identified as fragments of complement C3f. Therefore, the Fisher‐based model containing five proteomic features was able to effectively differentiate CRC patients from healthy controls and other cancers with a high sensitivity and specificity, and may be CRC‐specific. Serum complement C3f, which was significantly decreased in CRC group, may be relevant to the incidence of CRC. J. Cell. Biochem. 114: 448–455, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
276.
Models describing the light response of photosynthetic electron transport rate (ETR) are routinely used to determine how light absorption influences energy, reducing power and yields of primary productivity; however, no single model is currently able to provide insight into the fundamental processes that implicitly govern the variability of light absorption. Here we present development and application of a new mechanistic model of ETR for photosystem II based on the light harvesting (absorption and transfer to the core ‘reaction centres’) characteristics of photosynthetic pigment molecules. Within this model a series of equations are used to describe novel biophysical and biochemical characteristics of photosynthetic pigment molecules and in turn light harvesting; specifically, the eigen-absorption cross-section and the minimum average lifetime of photosynthetic pigment molecules in the excited state, which describe the ability of light absorption of photosynthetic pigment molecules and retention time of excitons in the excited state but are difficult to be measured directly. We applied this model to a series of previously collected fluorescence data and demonstrated that our model described well the light response curves of ETR, regardless of whether dynamic down-regulation of PSII occurs, for a range of photosynthetic organisms (Abies alba, Picea abies, Pinus mugo and Emiliania huxleyi). Inherent estimated parameters (e.g. maximum ETR and the saturation irradiance) by our model are in very close agreement with the measured data. Overall, our mechanistic model potentially provides novel insights into the regulation of ETR by light harvesting properties as well as dynamical down-regulation of PSII.  相似文献   
277.
Methoxypyrazines (MPs) are strongly odorant volatile molecules with vegetable-like fragrances that are widespread in plants. Some grapevine (Vitis vinifera) varieties accumulate significant amounts of MPs, including 2-methoxy-3-isobutylpyrazine (IBMP), which is the major MP in grape berries. MPs are of particular importance in white Sauvignon Blanc wines. The typicality of these wines relies on a fine balance between the pea pod, capsicum character of MPs and the passion fruit/grapefruit character due to volatile thiols. Although MPs play a crucial role in Sauvignon varietal aromas, excessive concentrations of these powerful odorants alter wine quality and reduce consumer acceptance, particularly in red wines. The last step of IBMP biosynthesis has been proposed to involve the methoxylation of the nonvolatile precursor 2-hydroxy-3-isobutylpyrazine to give rise to the highly volatile IBMP. In this work, we have used a quantitative trait loci approach to investigate the genetic bases of IBMP biosynthesis. This has led to the identification of two previously uncharacterized S-adenosyl-methionine-dependent O-methyltransferase genes, termed VvOMT3 and VvOMT4. Functional characterization of these two O-methyltransferases showed that the VvOMT3 protein was highly specific and efficient for 2-hydroxy-3-isobutylpyrazine methylation. Based on its differential expression in high- and low-MP-producing grapevine varieties, we propose that VvOMT3 is a key gene for IBMP biosynthesis in grapevine.The pleasure experienced while enjoying a glass of wine is the result of sophisticated sensory, neurophysiological, and psychological processes triggered by wine aroma. Wine flavor is the result of a complex mixture of volatile compounds in the headspace of the glass that induces feelings of pleasure at the brain level (Shepherd, 2006). During the last 40 years, over 800 volatile molecules have been formally identified in wines, in concentrations ranging from hundreds of milligrams per liter down to a few picograms per liter (Ebeler and Thorngate, 2009; Styger et al., 2011). Among all of them, a relatively limited number of compounds, called varietal (or primary) aromas, play a crucial role in wine flavor and typicality. These aromas, which are related to the grape variety, belong to a limited number of chemical families, including monoterpenes, C13 norisoprenoids, volatile sulfur compounds, and methoxypyrazines (MPs; Ebeler and Thorngate, 2009). Quite frequently, they exist mostly in the grape (Vitis vinifera) berry as nonvolatile, odorless, “bound” forms that can be released by chemical and enzymatic reactions occurring during the winemaking and wine aging processes, thus enhancing wine’s varietal expression (Styger et al., 2011). Two classical examples are the glycoside precursors of the monoterpenols (Strauss et al., 1986) and the cysteinylated or glutathionylated precursors of the volatile thiols (Tominaga et al., 1998; Peña-Gallego et al., 2012). Noticeable exceptions are the MPs, which are found in grape berries exclusively as free, volatile molecules.MPs are strongly odorant volatile heterocycles, with vegetable-like fragrances, that are widely occurring in the plant kingdom (Maga, 1982). In grape, they can be detected in fruits, leaves, shoots, and roots (Dunlevy et al., 2010). They are found in different grape varieties and are particularly abundant in the so-called Bordeaux cultivars (i.e. cv Cabernet Franc, Cabernet Sauvignon [CS], Sauvignon Blanc, Merlot, and Carménère [Car]; Bayonove et al., 1975; Lacey et al., 1991; Roujou de Boubée et al., 2002; Belancic and Agosin, 2007), whereas they are rarely detected in other cultivars, such as cv Pinot Noir (PN), Chardonnay, or Petit Verdot (PV). This finding indicates a strong genotype dependency of MP biosynthesis (Koch et al., 2010). MPs are accumulated in berries until bunch closure or véraison, and then their level declines after véraison (Hashizume and Samuta, 1999; Ryona et al., 2008). MP concentration in wine is highly correlated with the grape berry content at harvest (Roujou de Boubée et al., 2002). Three MPs are found in grape berries: 2-methoxy-3-isobutylpyrazine (IBMP), which is the most abundant, and two others, 2-methoxy-3-isopropylpyrazine (IPMP) and 2-methoxy-3-sec-butylpyrazine (SBMP; Ebeler and Thorngate, 2009). Both IBMP and IPMP display very low sensory detection thresholds in the wine matrix, ranging from 1 to 16 ng L–1.MPs are of particular importance in white Sauvignon Blanc wines. The typicality of these wines relies on a fine balance between the pea pod, capsicum character of MPs and the passion fruit/grapefruit character due to volatile thiols (Dubourdieu et al., 2006; Lund et al., 2009). Although MPs play a crucial role in Sauvignon varietal aromas, excessive concentrations of these extremely powerful odorants will reduce consumer acceptance (Parr et al., 2007). In red wine, MPs are considered as off-flavor, and red wines can be depreciated by concentrations above 10 ng L–1 (Allen et al., 1991; Roujou de Boubée et al., 2000; Belancic and Agosin, 2007). Given the importance of MPs, either as typical varietal aromas or as detrimental off-flavors, deciphering the genetic and molecular determinism of their accumulation is of high interest for viticulture.In spite of this, until recently little was known about the MP biosynthesis pathway or the MP biosynthetic genes, either in grapevine or other plant species. Theoretical biosynthesis pathways have been proposed since the mid-1970s. They all start by the addition of an α-dicarbonyl on a branched amino acid (Leu for IBMP, Val for IPMP) to form a 2-hydroxy-3-alkylpyrazine, which is subsequently transformed into the corresponding MP, by a methoxylation reaction (Murray and Whitfield 1975; Gallois et al., 1988). While the initial addition step remains to be demonstrated in plants, an S-adenosyl-l-Met (SAM)-dependent O-methyltransferase (OMT), capable of converting 2-hydroxy-3-isobutylpyrazine (IBHP) into IBMP, has been detected in CS shoots, partially purified and sequenced (Hashizume et al., 2001a, 2001b; Fig. 1). Recently, Dunlevy et al. (2010) characterized two OMTs, VvOMT1 and VvOMT2, capable of methylating IBHP in vitro, albeit with high apparent Km values. To investigate the genetic bases of MP biosynthesis in grape berries, we performed a quantitative trait loci (QTL) analysis, which has led to the identification of two previously uncharacterized OMTs termed VvOMT3 and VvOMT4. Functional characterization of these two OMTs showed that VvOMT3 was highly specific and efficient for IBHP methylation. Based on its differential expression in high-MP and low-MP grapevine varieties, we propose that VvOMT3 and, to a lesser extent, VvOMT4 are key genes for MP biosynthesis in grapevine berries.Open in a separate windowFigure 1.Putative biosynthesis pathway for IBMP adapted from Hashizume et al. (2001a). SAHcy, S-Adenosyl-l-homo-Cys.  相似文献   
278.
Congenital human cytomegalovirus (HCMV) infection is the most frequent infectious cause of birth defects, primarily neurological disorders. Neural progenitor/stem cells (NPCs) are the major cell type in the subventricular zone and are susceptible to HCMV infection. In culture, the differentiation status of NPCs may change with passage, which in turn may alter susceptibility to virus infection. Previously, only early-passage (i.e., prior to passage 9) NPCs were studied and shown to be permissive to HCMV infection. In this study, NPC cultures derived at different gestational ages were evaluated after short (passages 3 to 6) and extended (passages 11 to 20) in vitro passages for biological and virological parameters (i.e., cell morphology, expression of NPC markers and HCMV receptors, viral entry efficiency, viral gene expression, virus-induced cytopathic effect, and release of infectious progeny). These parameters were not significantly influenced by the gestational age of the source tissues. However, extended-passage cultures showed evidence of initiation of differentiation, increased viral entry, and more efficient production of infectious progeny. These results confirm that NPCs are fully permissive for HCMV infection and that extended-passage NPCs initiate differentiation and are more permissive for HCMV infection. Later-passage NPCs being differentiated and more permissive for HCMV infection suggest that HCMV infection in fetal brain may cause more neural cell loss and give rise to severe neurological disabilities with advancing brain development.  相似文献   
279.
Chronic hepatitis B virus (HBV) infection, a serious public health problem leading to cirrhosis and hepatocellular carcinoma, is currently treated with either pegylated alpha interferon (pegIFN-α) or one of the five nucleos(t)ide analogue viral DNA polymerase inhibitors. However, neither pegIFN-α nor nucleos(t)ide analogues are capable of reliably curing the viral infection. In order to develop novel antiviral drugs against HBV, we established a cell-based screening assay by using an immortalized mouse hepatocyte-derived stable cell line supporting a high level of HBV replication in a tetracycline-inducible manner. Screening of a library consisting of 26,900 small molecules led to the discovery of a series of sulfamoylbenzamide (SBA) derivatives that significantly reduced the amount of cytoplasmic HBV DNA. Structure-activity relationship studies have thus far identified a group of fluorine-substituted SBAs with submicromolar antiviral activity against HBV in human hepatoma cells. Mechanistic analyses reveal that the compounds dose dependently inhibit the formation of pregenomic RNA (pgRNA)-containing nucleocapsids of HBV but not other animal hepadnaviruses, such as woodchuck hepatitis virus (WHV) and duck hepatitis B virus (DHBV). Moreover, heterologous genetic complementation studies of capsid protein, DNA polymerase, and pgRNA between HBV and WHV suggest that HBV capsid protein confers sensitivity to the SBAs. In summary, SBAs represent a novel chemical entity with superior activity and a unique antiviral mechanism and are thus warranted for further development as novel antiviral therapeutics for the treatment of chronic hepatitis B.  相似文献   
280.
The available promoters in the Pichia pastoris expression platform are still limited. We selected and identified a novel strong constitutive promoter, P GCW14 , and tested its promoter activity using enhanced green fluorescent protein (EGFP) as a reporter. Potential promoter regions of P GCW14 were cloned upstream of the EGFP gene and promoter activity was analyzed by measuring fluorescence intensity. P GCW14 exhibited significantly stronger promoter activity than the classic strong constitutive promoters P TEF1 and P GAP under various carbon sources, suggesting that P GCW14 is a strong and constitutive promoter. Hence, P GCW14 can be used as a promoter for high-level expression of heterologous proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号