首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9195篇
  免费   704篇
  国内免费   974篇
  2024年   20篇
  2023年   107篇
  2022年   285篇
  2021年   506篇
  2020年   377篇
  2019年   450篇
  2018年   375篇
  2017年   275篇
  2016年   408篇
  2015年   582篇
  2014年   699篇
  2013年   782篇
  2012年   886篇
  2011年   765篇
  2010年   491篇
  2009年   464篇
  2008年   530篇
  2007年   466篇
  2006年   385篇
  2005年   297篇
  2004年   293篇
  2003年   260篇
  2002年   212篇
  2001年   146篇
  2000年   128篇
  1999年   129篇
  1998年   82篇
  1997年   62篇
  1996年   52篇
  1995年   60篇
  1994年   64篇
  1993年   40篇
  1992年   36篇
  1991年   43篇
  1990年   31篇
  1989年   23篇
  1988年   11篇
  1987年   10篇
  1986年   12篇
  1985年   12篇
  1984年   4篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
Human-induced pluripotent stem (iPS) cells share the same key properties as embryonic stem cells, and may be generated from patient- or disease-specific sources, which makes them attractive for personalized medicine, drug screens, or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state is a major challenge. Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells, or spermatogonial stem cells, as they express endogenous leukemia inhibitory factor (LIF) at high levels. Here, we examined the effect of exogenous microRNA-199a regulation on endogenous LIF expression in HuAECs, and in turn on human iPS cell pluripotency. We found that HuAECs feeder cells transfected with microRNA-199a mutant expressed LIF at high levels, allowing iPS to maintain a high level of alkaline phosphatase activity in long-term culture and form teratomas in severe combined immunodeficient mice. The expression of stem cell markers was increased in iPS cultured on HuAECs feeder cells transfected with the microRNA-199a mutant, compared with iPS cultured on HuAECs transfected with microRNA-199a or mouse embryo fibroblasts. Taken together, these results suggested that LIF expression might be regulated by microRNA-199a, and LIF was a crucial component in feeder cells, and also was required for maintenance of human iPS cells in an undifferentiated, proliferative state capable of self-renewal.  相似文献   
982.
Recently, induced pluripotent stem cells (iPS cells) have been derived from various techniques and show great potential for therapy of human diseases. Furthermore, the iPS technique can be used to provide cell models to explore pathological mechanisms of many human diseases in vitro, such as Duchenne muscular dystrophy (DMD), which is a severe recessive X-linked form of muscular dystrophy without effective treatment. In this study, we try to determine whether there are different characteristics of myocytes from mdx iPS cells and C57BL/10 iPS cells. Our results showed that both of mdx and C57BL/10 cells could be induced into iPS cells in vitro, whereas colony-forming ability of mdx iPS cells was much weaker than that of C57BL/10 iPS cells. Meanwhile, mdx iPS cells could be induced to differentiate into myocytes, whereas their differentiation efficiency was much lower than that of C57BL/10 iPS cells. And, the number of apoptotic cells in differentiated myocytes from mdx iPS cells was significantly higher than that from C57BL/10 iPS cells. More importantly, treatment of a pan-caspase inhibitor (Z-VAD) produced a significant decrease in apoptotic cells. This study might add some insight to the biology study of dystrophin gene.  相似文献   
983.
Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited.  相似文献   
984.
Cytokinins are plant hormones that play crucial roles in plant growth and development. Cytokinin dehydrogenase (CKX), regarded as a main negative regulator in cytokinin metabolism in plants, irreversibly degrades cytokinins into adenine/adenosine moiety. A CKX homologous gene, designated GhCKX, was cloned from upland cotton (Gossypium hirsutum L.). Transgenic tobacco plants over-expressing GhCKX showed a typical cytokinin-deficient phenotype, while CKX-silenced tobacco plants exhibited cytokinin over-producing phenotype. Tissue specifically enhancing the expression of GhCKX in the ovule epidermis of transgenic cotton led to a significant decrease of trans-zeatin and trans-zeatin riboside contents in the ovule. The decline of cytokinins resulted in a significant decrease in fiber initials on a single ovule. Our results indicate that GhCKX encodes a functional CKX, and cytokinins may be required for the initiation of cotton fiber cells.  相似文献   
985.
986.
Zhang P  Ma Y  Wang F  Yang J  Liu Z  Peng J  Qin H 《Molecular biology reports》2012,39(2):1471-1478
Accumulating evidence has demonstrated that miRNAs play important roles in the occurrence and development of colorectal cancer (CRC). However, whether miRNAs are associated with the metastasis of CRC remains largely unexplored. The aim of the current study is to profile miRNAs in different CRC metastatic cell lines to identify the biomarkers in CRC metastasis. Gene and miRNA expression profiling was performed to analyze the global expression of mRNAs and miRNAs in the four human CRC cell lines (LoVo, SW480, HT29 and Caco-2) with different potential of metastasis. Expression patterns of mRNAs and miRNAs were altered in different CRC cell lines. By developing an integrated bioinformatics analysis of gene and miRNA expression patterns, hsa-let-7i was identified to show the highest degree in the microRNA-GO-network and microRNA-Gene-network. The expression level of hsa-let-7i was further validated by qRT-PCR in CRC cells. In addition, the targets of hsa-let-7i were predicted by two programs TargetScan and PicTar, and target genes were validated by expression profiling in the most epresentative LoVo and Caco-2 cell lines. Eight genes including TRIM41, SOX13, SLC25A4, SEMA4F, RPUSD2, PLEKHG6, CCND2, and BTBD3 were identified as hsa-let-7i targets. Our data showed the power of comprehensive gene and miRNA expression profiling and the application of bioinformatics tools in the identification of novel biomarkers in CRC metastasis.  相似文献   
987.
Studying rhizobia in the root nodules of Sphaerophysa salsula (Pall.) DC in the northwest of China, we obtained five strains classified as genus Rhizobium on the basis of their 16S rRNA gene sequences. The sequence similarity of strain CCNWQTX14T with the most related species was 99.0%. Further phylogenetic analysis of housekeeping genes (recA and atpD) suggested the five strains comprised a novel lineage within Rhizobium. The nifH and nodD gene sequences of CCNWQTX14T were phylogenetically closely related with those of Sinorhizobium kummerowiae and R. sphaerophysae, respectively. The five strains isolated from different places were also distinct from related Rhizobium species using ERIC fingerprint profiles. The DNA–DNA hybridization value was 41.8% between CCNWQTX14T and Rhizobium sphaerophysae CCNWGS0238T. Our novel strains were only able to form effective nodules on its original host Sphaerophysa salsula. Our data showed that the five Rhizobium strains formed a unique genomic species, for which a novel species Rhizobium helanshanense sp. nov. is proposed. The type strain is CCNWQTX14T (=ACCC 16237T =HAMBI 3083T).  相似文献   
988.
Translational GTPases (trGTPases) regulate all phases of protein synthesis. An early event in the interaction of a trGTPase with the ribosome is the contact of the G-domain with the C-terminal domain (CTD) of ribosomal protein L12 (L12-CTD) and subsequently interacts with the N-terminal domain of L11 (L11-NTD). However, the structural and functional relationships between L12-CTD and L11-NTD remain unclear. Here, we performed mutagenesis, biochemical and structural studies to identify the interactions between L11-NTD and L12-CTD. Mutagenesis of conserved residues in the interaction site revealed their role in the docking of trGTPases. During docking, loop62 of L11-NTD protrudes into a cleft in L12-CTD, leading to an open conformation of this domain and exposure of hydrophobic core. This unfavorable situation for L12-CTD stability is resolved by a chaperone-like activity of the contacting G-domain. Our results suggest that all trGTPases—regardless of their different specific functions—use a common mechanism for stabilizing the L11-NTD•L12-CTD interactions.  相似文献   
989.
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号