首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6484篇
  免费   429篇
  国内免费   440篇
  2024年   8篇
  2023年   62篇
  2022年   177篇
  2021年   334篇
  2020年   203篇
  2019年   270篇
  2018年   240篇
  2017年   199篇
  2016年   266篇
  2015年   405篇
  2014年   464篇
  2013年   496篇
  2012年   587篇
  2011年   557篇
  2010年   351篇
  2009年   290篇
  2008年   351篇
  2007年   306篇
  2006年   277篇
  2005年   243篇
  2004年   199篇
  2003年   153篇
  2002年   136篇
  2001年   99篇
  2000年   81篇
  1999年   87篇
  1998年   45篇
  1997年   59篇
  1996年   59篇
  1995年   47篇
  1994年   32篇
  1993年   35篇
  1992年   49篇
  1991年   43篇
  1990年   28篇
  1989年   21篇
  1988年   12篇
  1987年   25篇
  1986年   16篇
  1985年   15篇
  1984年   1篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1977年   2篇
  1974年   1篇
  1973年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有7353条查询结果,搜索用时 62 毫秒
181.
Phototherapy can be used in two completely different but complementary therapeutic applications. While low level laser (or light) therapy (LLLT) uses red or near-infrared light alone to reduce inflammation, pain and stimulate tissue repair and regeneration, photodynamic therapy (PDT) uses the combination of light plus non-toxic dyes (called photosensitizers) to produce reactive oxygen species that can kill infectious microorganisms and cancer cells or destroy unwanted tissue (neo-vascularization in the choroid, atherosclerotic plaques in the arteries). The recent development of nanotechnology applied to medicine (nanomedicine) has opened a new front of advancement in the field of phototherapy and has provided hope for the development of nanoscale drug delivery platforms for effective killing of pathological cells and to promote repair and regeneration. Despite the well-known beneficial effects of phototherapy and nanomaterials in producing the killing of unwanted cells and promoting repair and regeneration, there are few reports that combine all three elements i.e. phototherapy, nanotechnology and, tissue repair and regeneration. However, these areas in all possible binary combinations have been addressed by many workers. The present review aims at highlighting the combined multi-model applications of phototherapy, nanotechnology and, reparative and regeneration medicine and outlines current strategies, future applications and limitations of nanoscale-assisted phototherapy for the management of cancers, microbial infections and other diseases, and to promote tissue repair and regeneration.  相似文献   
182.
Drought and high salinity are major environmental conditions limiting plant growth and development. Expansin is a cell-wall-loosening protein known to disrupt hydrogen bonds between xyloglucan and cellulose microfibrils. The expression of expansin increases in plants under various abiotic stresses, and plays an important role in adaptation to these stresses. We aimed to investigate the role of the RhEXPA4, a rose expansin gene, in response to abiotic stresses through its overexpression analysis in Arabidopsis. In transgenic Arabidopsis harboring the Pro RhEXPA4 ::GUS construct, RhEXPA4 promoter activity was induced by abscisic acid (ABA), drought and salt, particularly in zones of active growth. Transgenic lines with higher RhEXPA4 level developed compact phenotypes with shorter stems, curly leaves and compact inflorescences, while the lines with relatively lower RhEXPA4 expression showed normal phenotypes, similar to the wild type (WT). The germination percentage of transgenic Arabidopsis seeds was higher than that of WT seeds under salt stress and ABA treatments. Transgenic plants showed enhanced tolerance to drought and salt stresses: they displayed higher survival rates after drought, and exhibited more lateral roots and higher content of leaf chlorophyll a under salt stress. Moreover, high-level RhEXPA4 overexpressors have multiple modifications in leaf blade epidermal structure, such as smaller, compact cells, fewer stomata and midvein vascular patterning in leaves, which provides them with more tolerance to abiotic stresses compared to mild overexpressors and the WT. Collectively, our results suggest that RhEXPA4, a cell-wall-loosening protein, confers tolerance to abiotic stresses through modifying cell expansion and plant development in Arabidopsis.  相似文献   
183.
184.
Metformin, which is commonly used as an oral anti-hyperglycemic agent of the biguanide family, may reduce cancer risk and improve prognosis. However, the mechanism by which metformin affects various cancers, including lung cancer, remains unknown. MiR-222 induces cell growth and cell cycle progression via direct targeting of p27, p57 and PTEN in cancer cells. In the present study, we used A549 and NCI-H358 human lung cancer cell lines to study the effects and mechanisms of metformin. Metformin treatment reduced expression of miR-222 in these cells (p < 0.05). As a result, protein abundance of p27, p57 and PTEN were increased in cells exposed to metformin. Therefore, these data provide novel evidence for a mechanism that may contribute to the anti-neoplastic effects of metformin suggested by recent population studies and justifying further work to explore potential roles for it in lung cancer treatment.  相似文献   
185.
186.
Catalase plays an important role in the metabolism of marine bacteria and has potential impact on the marine environment. Four PCR primers were designed to amplify the catalase gene fragments in marine bacteria by applying metagenomic DNA from Yellow Sea surface water as the template. Of the four reproducible target PCR products, the longest one with 900 bp were chosen for catalase gene library construction by the T-vector and the white Escherichia coli colonies in the library was screened through restriction-digesting the reamplified insert fragments by the selected restriction endonuclease MboI, and then the bands of the resulting products were displayed in the agarose gel by electrophoresis. The unique restriction fragment length polymorphism (RFLP) pattern was selected and the corresponding catalase gene fragments were sequenced, which verified that every unique RFLP pattern represented one type of catalase. This PCR–RFLP method above was established to investigate the bacterial catalase diversity in seawater.  相似文献   
187.
188.
Thiamethoxam (THIA), a second generation neonicotinoid insecticide in the thianicotinyl subclass, is used worldwide. Environmental studies revealed that microbial degradation is the major mode of removal of this pesticide from soil. However, microbial transformation of THIA is poorly understood. In the present study, we isolated a bacterium able to degrade THIA from rhizosphere soil. The bacterium was identified as Ensifer adhaerens by its morphology and 16S ribosomal DNA sequence analysis. High-performance liquid chromatography and mass spectrometry analysis suggested that the major metabolic pathway of THIA in E. adhaerens TMX-23 involves the transformation of its N-nitroimino group (=N–NO2) to N-nitrosoimino (=N–NO) and urea (=O) metabolites. E. adhaerens TMX-23 is a nitrogen-fixing bacterium harboring two types of nifH genes in its genome, one of which is 98 % identical to the nifH gene in the cyanobacterium Calothrix sp. MCC-3A. E. adhaerens TMX-23 released various plant-growth-promoting substances including indole-3-acetic acid, exopolysaccharides, ammonia, HCN, and siderophores. Inoculation of E. adhaerens TMX-23 onto soybean seeds (Glycine max L.) with NaCl at 50, 100, or 154 mmol/L increased the seed germination rate by 14, 21, and 30 %, respectively. THIA at 10 mg/L had beneficial effects on E. adhaerens TMX-23, enhancing growth of the bacterium and its production of salicylic acid, an important plant phytohormone associated with plant defense responses against abiotic stress. The nitrogen-fixing and plant-growth-promoting rhizobacterium E. adhaerens TMX-23, which is able to degrade THIA, has the potential for bioaugmentation as well as to promote growth of field crops in THIA-contaminated soil.  相似文献   
189.
Syngas fermentation is a promising route for resource recovery. Acetate is an important industrial chemical product and also an attractive precursor for liquid biofuels production. This study demonstrated high fraction acetate production from syngas (H2 and CO2) in a hollow-fiber membrane biofilm reactor, in which the hydrogen utilizing efficiency reached 100 % during the operational period. The maximum concentration of acetate in batch mode was 12.5 g/L, while the acetate concentration in continuous mode with a hydraulic retention time of 9 days was 3.6?±?0.1 g/L. Since butyrate concentration was rather low and below 0.1 g/L, the acetate fraction was higher than 99 % in both batch and continuous modes. Microbial community analysis showed that the biofilm was dominated by Clostridium spp., such as Clostridium ljungdahlii and Clostridium drakei, the percentage of which was 70.5 %. This study demonstrates a potential technology for the in situ utilization of syngas and valuable chemical production.  相似文献   
190.
A suppression subtractive hybridization cDNA library was used to screen the differently expressed (up-regulated) genes in the photosynthesis–fermentation approach (PFA) of Chlorella protothecoides cultivation. A total of 87 clones were obtained and sequenced, in which 78 clones were homologous to known genes in databases. Among them, the ammonium transporter gene (CpAMT1) was characterized in detail. Quantitative real-time PCR showed that the expression of CpAMT1 was significantly induced by PFA and correlated with lipid accumulation. The up-regulation of CpAMT1 was suppressed by glutamine, while the lipid biosynthesis was also inhibited. Further analysis showed that the expression of CpAMT1 was correlated with glutamine synthetase activity, suggesting that CpAMT1, along with glutamine synthetase/glutamate synthase, may be responsible for nitrogen sensing in C. protothecoides. Together, these results imply that the ammonium transporter CpAMT1 could be the initial sensor of nitrogen deficiency and channels the carbon excess toward lipid biosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号