A two-dimensional flow model has been developed to simulate mass transport in a microchannel bioreactor with a porous wall. A two-domain approach, based on the finite volume method, was implemented. For the fluid part, the governing equation used was the Navier-Stokes equation; for the porous medium region, the generalized Darcy-Brinkman-Forchheimer extended model was used. For the porous-fluid interface, a stress jump condition was enforced with a continuity of normal stress, and the mass interfacial conditions were continuities of mass and mass flux. Two parameters were defined to characterize the mass transports in the fluid and porous regions. The porous Damkohler number is the ratio of consumption to diffusion of the substrates in the porous medium. The fluid Damkohler number is the ratio of the substrate consumption in the porous medium to the substrate convection in the fluid region. The concentration results were found to be well correlated by the use of a reaction-convection distance parameter, which incorporated the effects of axial distance, substrate consumption, and convection. The reactor efficiency reduced with reaction-convection distance parameter because of reduced reaction (or flux), and smaller local effectiveness factor due to the lower concentration in Michaelis-Menten type reactions. The reactor was more effective, and hence, more efficient with the smaller porous Damkohler number. The generalized results could find applications for the design of bioreactors with a porous wall. 相似文献
Recent studies have shown that circulating microRNAs (miRNA) play a critical role in diagnosing acute coronary syndrome (ACS). This study aims to investigate the effect of miR-224 on atherosclerotic plaques forming and vascular remodeling in ACS and its relationship with TGF-β/Smad pathway. Myocardial infarction (MI) rat model was established and lentivirus vector of miR-224 inhibitor was prepared for investigating the effect of downregulated miR-224 on the contents of nitric oxide (NO) and endothelin-1 (ET-1), blood lipid levels and inflammatory factor levels in serum as well as the TGF-β/Smad pathway. The rats suffering from MI had decreased survival rates and exhibited reduced levels of NO, high-density lipoprotein cholesterol, and lumen diameter, and Smad7 messenger RNA (mRNA) and protein expression; while had significantly increased ratio of heart weight or body weight, levels of ET-1, inflammatory factors, blood lipid indexes, vascular remodeling indexes, collagen volume fraction, vulnerable atherosclerotic plaque area, VCAM-1 and MMP-2 protein expression, TGF-β, Smad2, Smad3, and Smad4 mRNA and protein expression. After inhibiting the TGF-β/Smad pathway, the rats suffering from MI showed notably opposite trend. In conclusion, downregulation of miR-224 expression promotes the formation of vulnerable atherosclerotic plaques and vascular remodeling in ACS through activation of the TGF-β/Smad pathway. Therefore, this study provides a new therapeutic target for ACS. 相似文献
Sclerotinia stem rot (SSR), caused by the oxalate-secreting necrotrophic fungal pathogen Sclerotinia sclerotiorum, is one of the devastating diseases that causes significant yield loss in soybean (Glycine max). Until now, effective control of the pathogen is greatly limited by a lack of strong resistance in available commercial soybean cultivars. In this study, transgenic soybean plants overexpressing an oxalic acid (OA)-degrading oxalate oxidase gene OXO from wheat were generated and evaluated for their resistance to S. sclerotiorum. Integration and expression of the transgene were confirmed by Southern and western blot analyses. As compared with non-transformed (NT) control plants, the transgenic lines with increased oxalate oxidase activity displayed significantly reduced lesion sizes, i.e., by 58.71–82.73% reduction of lesion length in a detached stem assay (T3 and T4 generations) and 76.67–82.0% reduction of lesion area in a detached leaf assay (T4 generation). The transgenic plants also showed increased tolerance to the externally applied OA (60 mM) relative to the NT controls. Consecutive resistance evaluation further confirmed an enhanced and stable resistance to S. sclerotiorum in the T3 and T4 transgenic lines. Similarly, decreased OA content and increased hydrogen peroxide (H2O2) levels were also observed in the transgenic leaves after S. sclerotiorum inoculation. Quantitative real-time polymerase chain reaction analysis revealed that the expression level of OXO reached a peak at 1 h and 4 h after inoculation with S. sclerotiorum. In parallel, a significant up-regulation of the hypersensitive response-related genes GmNPR1-1, GmNPR1-2, GmSGT1, and GmRAR occurred, eventually induced by increased release of H2O2 at the infection sites. Interestingly, other defense-related genes such as salicylic acid-dependent genes (GmPR1, GmPR2, GmPR3, GmPR5, GmPR12 and GmPAL), and ethylene/jasmonic acid-dependent genes (GmAOS, GmPPO) also exhibited higher expression levels in the transgenic plants than in the NT controls. Our results demonstrated that overexpression of OXO enhances SSR resistance by degrading OA secreted by S. sclerotiorum and increasing H2O2 levels, and eliciting defense responses mediated by multiple signaling pathways.
We have previously reported that a subunit protein vaccine based on the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein and a recombinant adeno-associated virus (rAAV)-based RBD (RBD-rAAV) vaccine could induce highly potent neutralizing Ab responses in immunized animals. In this study, systemic, mucosal, and cellular immune responses and long-term protective immunity induced by RBD-rAAV were further characterized in a BALB/c mouse model, with comparison of the i.m. and intranasal (i.n.) routes of administration. Our results demonstrated that: 1) the i.n. vaccination induced a systemic humoral immune response of comparable strength and shorter duration than the i.m. vaccination, but the local humoral immune response was much stronger; 2) the i.n. vaccination elicited stronger systemic and local specific cytotoxic T cell responses than the i.m. vaccination, as evidenced by higher prevalence of IL-2 and/or IFN-gamma-producing CD3+/CD8+ T cells in both lungs and spleen; 3) the i.n. vaccination induced similar protection as the i.m. vaccination against SARS-CoV challenge in mice; 4) higher titers of mucosal IgA and serum-neutralizing Ab were associated with lower viral load and less pulmonary pathological damage, while no Ab-mediated disease enhancement effect was observed; and 5) the vaccination could provide long-term protection against SARS-CoV infection. Taken together, our findings suggest that RBD-rAAV can be further developed into a vaccine candidate for prevention of SARS and that i.n. vaccination may be the preferred route of administration due to its ability to induce SARS-CoV-specific systemic and mucosal immune responses and its better safety profile. 相似文献
A cDNA encoding a phosphoinositide-specific phospholipase C (PI-PLC) has been isolated from Zea mays by screening a cDNA library. The cDNA, designated ZmPLC, encodes a polypeptide of 586 amino acids, containing the catalytic X, Y and C2 domains found in all PI-PLCs from plants. Northern blot analysis showed that the expression of the ZmPLC gene in roots is up-regulated under conditions of high salt, dehydration, cold or low osmotic stress conditions. Recombinant ZmPLC protein was expressed in Esch- erichia coli, purified and used to produce polyclonal antibody, this polyclonal antibody is important for further studies to assess the ultimate function of the ZmPLC gene in plants. 相似文献
Poor healing of cutaneous wounds is a common medical problem in the field of traumatology. Due to the intricate pathophysiological processes of wound healing, the use of conventional treatment methods, such as chemical molecule drugs and traditional dressings, have been unable to achieve satisfactory outcomes. Within recent years, explicit evidence suggests that mesenchymal stem cells (MSCs) have great therapeutic potentials on skin wound healing and regeneration. However, the direct application of MSCs still faces many challenges and difficulties. Intriguingly, exosomes as cell-secreted granular vesicles with a lipid bilayer membrane structure and containing specific components from the source cells may emerge to be excellent substitutes for MSCs. Exosomes derived from MSCs (MSC-exosomes) have been demonstrated to be beneficial for cutaneous wound healing and accelerate the process through a variety of mechanisms. These mechanisms include alleviating inflammation, promoting vascularization, and promoting proliferation and migration of epithelial cells and fibroblasts. Therefore, the application of MSC-exosomes may be a promising alternative to cell therapy in the treatment of cutaneous wounds and could promote wound healing through multiple mechanisms simultaneously. This review will provide an overview of the role and the mechanisms of MSC-derived exosomes in cutaneous wound healing, and elaborate the potentials and future perspectives of MSC-exosomes application in clinical practice. 相似文献
Metal organic frameworks (MOFs) are considered as promising candidates for supercapacitors because of high specific area and potential redox sites. However, their shuffled orientations and low conductivity nature lead to severely‐degraded performance. Designing an accessibly‐manipulated and efficient method to address those issues is of outmost significance for MOF application in supercapacitors. It is the common way that MOFs scarify themselves as templates or precursors to prepare target products. But to reversely think it, using target products to prepare MOF could be the way to unlock the bottleneck of MOFs' performance in supercapacitors. Herein, a novel strategy using Co(OH)2 as both the template and precursor to fabricate vertically‐oriented MOF electrode is proposed. The electrode shows a double high specific capacitance of 1044 Fg?1 and excellent rate capability compared to MOF in powder form. An asymmetric supercapacitor was also fabricated, which delivers a maximum energy density of 28.5 W h kg?1 at a power density of 1500 W kg?1, and the maximum of 24000 W kg?1 can be obtained with a remaining energy density of 13.3 W h kg?1. Therefore, the proposed strategy paves the way to unlock the inherent advantages of MOFs and also inspires for advanced MOF synthesis with optimum performance. 相似文献