首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22325篇
  免费   1918篇
  国内免费   1472篇
  25715篇
  2024年   52篇
  2023年   239篇
  2022年   591篇
  2021年   879篇
  2020年   638篇
  2019年   805篇
  2018年   865篇
  2017年   635篇
  2016年   962篇
  2015年   1442篇
  2014年   1666篇
  2013年   1752篇
  2012年   2057篇
  2011年   1969篇
  2010年   1177篇
  2009年   1113篇
  2008年   1289篇
  2007年   1183篇
  2006年   1075篇
  2005年   899篇
  2004年   881篇
  2003年   715篇
  2002年   571篇
  2001年   365篇
  2000年   302篇
  1999年   263篇
  1998年   202篇
  1997年   158篇
  1996年   154篇
  1995年   119篇
  1994年   111篇
  1993年   64篇
  1992年   90篇
  1991年   70篇
  1990年   81篇
  1989年   62篇
  1988年   44篇
  1987年   45篇
  1986年   27篇
  1985年   27篇
  1984年   33篇
  1983年   13篇
  1982年   10篇
  1981年   7篇
  1980年   2篇
  1978年   2篇
  1967年   2篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Invertebrates rely solely on the innate immune system for defense against pathogens and other stimuli. Fatty acid binding proteins (FABP), members of the lipid binding proteins superfamily, play a crucial role in fatty acid transport and lipid metabolism and are also involved in gene expression induced by fatty acids. In the vertebrate immune system, FABP is involved in inflammation regulated by fatty acids through its interaction with peroxidase proliferator activate receptors (PPARs). However, the immune functions of FABP in invertebrates are not well characterized. For this reason, we investigated the immune functionality of two fatty acid binding proteins, Es-FABP9 and Es-FABP10, following lipopolysaccharide (LPS) challenge in the Chinese mitten crab (Eriocheir sinensis). An obvious variation in the expression of Es-FABP9 and Es-FABP10 mRNA in E. sinensis was observed in hepatopancreas, gills, and hemocytes post-LPS challenge. Recombinant proteins rEs-FABP9 and rEs-FABP10 exhibited distinct bacterial binding activity and bacterial agglutination activity against Escherichia coli and Staphylococcus aureus. Furthermore, bacterial growth inhibition assays demonstrated that rEs-FABP9 responds positively to the growth inhibition of Vibrio parahaemolyticuss and S. aureus, while rEs-FABP10 responds positively to the growth inhibition of Aeromonas hydrophila and Bacillus subtilis. Coating of agarose beads with recombinant rEs-FABP9 and rEs-FABP10 dramatically enhanced encapsulation of the beads by crab hemocytes in vitro. In conclusion, the data presented here demonstrate the participation of these two lipid metabolism-related proteins in the innate immune system of E. sinensis.  相似文献   
92.
An unbalanced chromosome number (aneuploidy) is present in most malignant tumours and has been attributed to mitotic mis-segregation of chromosomes. However, recent studies have shown a relatively high rate of chromosomal mis-segregation also in non-neoplastic human cells, while the frequency of aneuploid cells remains low throughout life in most normal tissues. This implies that newly formed aneuploid cells are subject to negative selection in healthy tissues and that attenuation of this selection could contribute to aneuploidy in cancer. To test this, we modelled cellular growth as discrete time branching processes, during which chromosome gains and losses were generated and their host cells subjected to selection pressures of various magnitudes. We then assessed experimentally the frequency of chromosomal mis-segregation as well as the prevalence of aneuploid cells in human non-neoplastic cells and in cancer cells. Integrating these data into our models allowed estimation of the fitness reduction resulting from a single chromosome copy number change to an average of ≈30% in normal cells. In comparison, cancer cells showed an average fitness reduction of only 6% (p = 0.0008), indicative of aneuploidy tolerance. Simulations based on the combined presence of chromosomal mis-segregation and aneuploidy tolerance reproduced distributions of chromosome aberrations in >400 cancer cases with higher fidelity than models based on chromosomal mis-segregation alone. Reverse engineering of aneuploid cancer cell development in silico predicted that aneuploidy intolerance is a stronger limiting factor for clonal expansion of aneuploid cells than chromosomal mis-segregation rate. In conclusion, our findings indicate that not only an elevated chromosomal mis-segregation rate, but also a generalised tolerance to novel chromosomal imbalances contribute to the genomic landscape of human tumours.  相似文献   
93.
In contrast to the impact of elevated progesterone on endometrial receptivity, the data on whether increased progesterone levels affects the quality of embryos is still limited. This study retrospectively enrolled 4,236 fresh in vitro fertilization (IVF) cycles and sought to determine whether increased progesterone is associated with adverse outcomes with regard to top quality embryos (TQE). The results showed that the TQE rate significantly correlated with progesterone levels on the day of human chorionic gonadotropin (hCG) trigger (P = 0.009). Multivariate linear regression analysis of factors related to the TQE rate, in conventional IVF cycles, showed that the TQE rate was negatively associated with progesterone concentration on the day of hCG (OR was -1.658, 95% CI: -2.806 to -0.510, P = 0.005). When the serum progesterone level was within the interval 2.0–2.5 ng/ml, the TQE rate was significantly lower (P <0.05) than when the progesterone level was < 1.0 ng/ml; similar results were obtained for serum progesterone levels >2.5 ng/ml. Then, we choose a progesterone level at 1.5ng/ml, 2.0 ng/ml and 2.5 ng/ml as cut-off points to verify this result. We found that the TQE rate was significantly different (P <0.05) between serum progesterone levels < 2.0 ng/ml and >2.0 ng/ml. In conclusion, the results of this study clearly demonstrated a negative effect of elevated progesterone levels on the day of hCG trigger, on TQE rate, regardless of the basal FSH, the total gonadotropin, the age of the woman, or the time of ovarian stimulation. These data demonstrate that elevated progesterone levels (>2.0 ng/ml) before oocyte maturation were consistently detrimental to the oocyte.  相似文献   
94.
95.
96.
97.
Differing from the weakly antiaromatic B80 buckyball, the medium-sized C 1–B28 and D 2h –B38, as well as their mono- to tetra-anions, are highly aromatic, as indicated by the negative nucleus-independent chemical shifts (NICSs) at their cage centers. The interior cavities and high aromaticity of the B28 and B38 cages render them very promising hosts to accommodate diverse metal atoms. Accordingly, we carried out systematic density functional theory (DFT) computations on the structures, stabilities and electronic properties of metalloborofullerenes MB n (M?=?Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Sc, Y, La and Ti; n?=?28 and 38). Among them, besides the recently reported M@B38(M?=?Sc, Y and Ti) [Lu et al. (2015) Phys Chem Chem Phys 17:20897–20902], Ti@B28 and M@B38 (M?=?Ca and La) also favor endohedral structures with large binding energies, and are suggested promising targets for experimental applications. Note that Ti@B28 is the first endohedral derivative based on the new B28 fullerene, and La@B38 features the largest metal size inside a B38 cage thus far. These endohedral derivatives, as exemplified by Ca@B38, may exhibit σ and π double aromaticity over the whole cage surface, indicating their considerable stability. In contrast, the other metals prefer to reside at the exterior cage surface, due mainly to the mismatch of their sizes with the boron cages, though the size match is not the only factor to determine their doping form. Furthermore, the infrared absorption spectra and 11B nuclear magnetic resonance spectra of the three new M@B n complexes were computed to assist future experimental characterization.
Graphical Abstract Putting more metals into medium-sized boron cages!
  相似文献   
98.
An extract of Ulmus macrocarpa Hance, commonly known as the large-fruited elm, has been prescribed as a traditional medicine. In this study, we aimed to investigate the cellular immune effects of U. macrocarpa stem cortex extracts on cyclophosphamide (CY)-treated splenocytes and mice. A methanol extract showed an improved survival rate of splenocytes after 72?h. The extract was successively partitioned with dichloromethane, ethyl acetate, n-butanol, and water; and the fractions so obtained were also examined for their proliferative activity. Among them, the water fraction of U. macrocarpa showed the highest proliferation of splenocytes and was used throughout the present study. We tested the survival rate of splenocytes through dose-dependent treatment of CY and the suppression of the survival effect by CY was recovered by treatment with the water extract of U. macrocarpa. To determine the mechanism involved, we examined the expression of B-cell lymphoma-extra large (Bcl-xL) anti-apoptotic protein. CY decreased Bcl-xL protein levels in resting splenocyte cultures, whereas splenocytes were exposed to water extracts of U. macrocarpa in the presence of CY; however, elevations in Bcl-xL were observed at 96?h. Mice splenocytes treated with water extract of U. macrocarpa for cellular immunity showed an increase in the activity of the mixed lymphocyte reaction (MLR), cytotoxic T lymphocytes (CTLs), and natural killer (NK) cells. In addition, mice receiving a water extract of U. macrocarpa recovered the CTL, NK, and MLR activities suppressed by CY administration. Consequently, U. macrocarpa improves the cell-mediated immune response and provides an insight on cell-based tonic materials.  相似文献   
99.
Late embryogenesis abundant (LEA) proteins have been identified in a wide range of organisms and are believed to play a role in the adaptation of plants to stress conditions. In this study, we performed genome-wide identification of LEA proteins and their coding genes in Moso bamboo (Phyllostachys edulis) of Poaceae. A total of 23 genes encoding LEA proteins (PeLEAs) were found in P. edulis that could be classified to six groups based on Pfam protein family and homologous analysis. Further in silico analyses of the structures, gene amount, and biochemical characteristics were conducted and compared with those of O. sativa (OsLEAs), B. distachyon (BdLEAs), Z. mays (ZmLEAs), S. bicolor (SbLEAs), Arabidopsis, and Populus trichocarpa. The less number of PeLEAs was found. Evolutionary analysis revealed orthologous relationship and colinearity between P. edulis, O. sativa, B. distachyon, Z. mays, and S. bicolor. Analyses of the non-synonymous (Ka) and synonymous (Ks)substitution rates and their ratios indicated that the duplication of PeLEAs may have occurred around 18.8 million years ago (MYA), and divergence time of LEA family among the P. edulis-O. sativa and P. edulisB. distachyon, P. edulis-S. bicolor, and P. edulis-Z. mays was approximately 30 MYA, 36 MYA, 48 MYA, and 53 MYA, respectively. Almost all PeLEAs contain ABA- and (or) stress-responsive regulatory elements. Further RNA-seq analysis revealed approximately 78% of PeLEAs could be up-regulated by dehydration and cold stresses. The present study makes insights into the LEA family in P. edulis and provides inventory of stress-responsive genes for further functional validation and transgenic research aiming to plant genetic improvement of abiotic stress tolerance.  相似文献   
100.
Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号