MicroRNAs (miRNAs) are endogenous small noncoding RNA molecules that negatively regulate gene expression. Herein, we investigated a selective number of miRNAs for their expression in skin tissue of Liaoning Cashmere goat during hair follicle cycles, and their intracellular regulatory networks were constructed based on bioinformatics analysis. The relative expression of six miRNAs (mir-103-3p, -15b-5p, 17-5p, -200b, -25-3p, and -30c-5p) at anagen phase is significantly higher than that at catagen and/or telogen phases. In comparison to anagen, the relative expression of seven miRNAs (mir-148a-3p, -199a-3p, -199a-5p, -24-3p, -30a-5p, -30e-5p, and -29a-3p) was revealed to be significantly up-regulated at catagen and/or telogen stages. The network analyses of miRNAs indicated those miRNAs investigated might be directly or indirectly involved in several signaling pathways through their target genes. These results provided a foundation for further insight into the roles of these miRNAs in skin tissue of Liaoning Cashmere goat during hair follicle cycles. 相似文献
The objective was to determine the effect of 2-mercaptoethanol and cysteine on in vitro developmental competence of oocytes from lambs (4-8-week old) stimulated with eCG and pFSH. Oocytes were matured in medium (TCM199) with no supplement (Control group) or with 100muM 2-mercaptoethanol and 600muM cysteine (GSH group). Oocytes from adult sheep were also included (Adult group). The addition of 2-mercaptoethanol and cysteine did not improve nuclear maturation or microtubule configuration 12, 15, 18, or 24h after placement in maturation medium. Sperm head decondensation and male pronucleus formation were evaluated at 6, 12, and 18h after commencement of IVF; sperm decondensation appeared earlier in the GSH group (6h after the start of IVF). There were differences (P<0.05) between the Control group and the GSH and Adult groups for: fertilization rate at both 12h (55.4, 77.0, and 80.6%, respectively) and 18h (67.9, 86.9, and 88.7%); parthenogenesis rate at both 12h (25.0, 10.8, and 5.6%) and 18h (28.3, 9.8, and 4.5%); and polyspermy rate at 18h (26.4, 4.9, and 5.7%). Blastocyst rate at 7d was higher in the GSH group than the Control group (23.9% vs. 14.9%, P<0.05), but both were lower (P<0.05) than the Adult group (38.3%). The addition of 2-mercaptoethanol and cysteine improved sperm decondensation and rates of fertilization and the blastocyst development to 7d, with no effect on blastocyst rate at 9d. 相似文献
A slow infiltration experiment with different hydraulic loads (0, 3, 6, 9, 12, and 15 cm per week) of domestic wastewater was conducted in a 'Zhonglin 2001' poplar plantation to study the effects of the wastewater slow infiltration on the growth of the plantation. Comparing with the control (0 cm), the other five treatments increased the soil organic matter, total N, total P, total K, and Na+ contents in the plantation averagely by 1.940 g x kg(-1), 0.115 g x kg(-1), 0.029 g x kg(-1), 1.454 g x kg(-1) and 0.030 g x kg(-1), respectively. At lower hydraulic loads (3-12 cm per week), the poplar biomass growth and the N, P and Na+ contents in different poplar organs averagely increased by 17.583 t x hm(-2) x a(-1), 3.086 g x kg(-1), 0.645 g x kg(-1), and 0.121 g x kg(-1), with the maximum (36.252 t x hm(-2) x a(-1), 13.162 g x kg(-1), 5.137 g x kg(-1), and 0.361 g x kg(-1), respectively) at hydraulic loads 6-12 cm per week. The further increase of the hydraulic load decreased the poplar biomass growth and the N, P and Na+ contents in different poplar organs. The K content in different poplar organs decreased with increasing hydraulic load. Treating with domestic wastewater increased the leaf length, decreased the leaf asymmetry, and delayed leaf-falling. At high hydraulic load (15 cm per week), the higher soil Na+ and water contents would threat the poplar growth. The proper domestic wastewater hydraulic loads for the growth of poplar 'Zhonglin 2001' plantation would be 3-12 cm per week. 相似文献
The nonhuman primates most commonly used in medical research are from the genus Macaca. To better understand the genetic differences between these animal models, we present high-quality draft genome sequences from two macaque species, the cynomolgus/crab-eating macaque and the Chinese rhesus macaque. Comparison with the previously sequenced Indian rhesus macaque reveals that all three macaques maintain abundant genetic heterogeneity, including millions of single-nucleotide substitutions and many insertions, deletions and gross chromosomal rearrangements. By assessing genetic regions with reduced variability, we identify genes in each macaque species that may have experienced positive selection. Genetic divergence patterns suggest that the cynomolgus macaque genome has been shaped by introgression after hybridization with the Chinese rhesus macaque. Macaque genes display a high degree of sequence similarity with human disease gene orthologs and drug targets. However, we identify several putatively dysfunctional genetic differences between the three macaque species, which may explain functional differences between them previously observed in clinical studies. 相似文献
Aims: To investigate the species-specific prevalence of vhhP2 among Vibrio harveyi isolates and the applicability of vhhP2 in the specific detection of V. harveyi from crude samples of animal and environmental origins. Methods and Results: A gene ( vhhP2 ) encoding an outer membrane protein of unknown function was identified from a pathogenic V. harveyi isolate. vhhP2 is present in 24 V. harveyi strains isolated from different geographical locations but is absent in 24 strains representing 17 different non- V. harveyi species, including V. parahaemolyticus and V. alginolyticus . A simple polymerase chain reaction method for the identification of V. harveyi was developed based on the conserved sequence of vhhP2 . This method was demonstrated to be applicable to the quick detection of V. harveyi from crude animal specimens and environmental samples. The specificity of this method was tested by applying it to the examination of two strains of V. campbellii , which is most closely related to V. harveyi . One of the V. campbellii strains was falsely identified as V. harveyi . Conclusions: vhhP2 is ubiquitously present in the V. harveyi species and is absent in most of the non- V. harveyi species; this feature enables vhhP2 to serve as a genetic marker for the rapid identification of V. harveyi . However, this method can not distinguish some V. campbellii strains from V. harveyi . Significance and Impact of the Study: the significance of our study is the identification of a novel gene of V. harveyi and the development of a simple method for the relatively accurate detection of V. harveyi from animal specimens and environmental samples. 相似文献
This study aimed to investigate the potential effects of gold nanoparticles (Au-NPs) on rat cortical neurons exposed to oxygen–glucose deprivation/reperfusion (OGD/R) and to elucidate the corresponding mechanisms. Primary rat cortical neurons were exposed to OGD/R, which is commonly used in vitro to mimic ischemic injury, and then treated with 5- or 20-nm Au-NPs. We then evaluated cell viability, apoptosis, oxidative stress, and mitochondrial respiration in these neurons. We found that 20-nm Au-NPs increased cell viability, alleviated neuronal apoptosis and oxidative stress, and improved mitochondrial respiration after OGD/R injury, while opposite effects were observed for 5-nm Au-NPs. In terms of the underlying mechanisms, we found that Au-NPs could regulate Akt signaling. Taken together, these results show that 20-nm Au-NPs can protect primary cortical neurons against OGD/R injury, possibly by decreasing apoptosis and oxidative stress, while activating Akt signaling and mitochondrial pathways. Our results suggest that Au-NPs may be potential therapeutic agents for ischemic stroke.
In the placental vasculature, where oxygenation may be an important regulator of vascular reactivity, there is a paucity of data on the expression of potassium (K) channels, which are important mediators of vascular smooth muscle tone. We therefore addressed the expression and function of several K channel subtypes in human placentas. The expression of voltage-gated (Kv)2.1, KV9.3, large-conductance Ca2+-activated K channel (BKCa), inward-rectified K+ channel (KIR)6.1, and two-pore domain inwardly rectifying potassium channel-related acid-sensitive K channels (TASK)1 in chorionic plate arteries, veins, and placental homogenate was assessed by RT-PCR and Western blot analysis. Functional activity of K channels was assessed pharmacologically in small chorionic plate arteries and veins by wire myography using 4-aminopyridine, iberiotoxin, pinacidil, and anandamide. Experiments were performed at 20, 7, and 2% oxygen to assess the effect of oxygenation on the efficacy of K channel modulators. KV2.1, KV9.3, BKCa, KIR6.1, and TASK1 channels were all demonstrated to be expressed at the message level. KV2.1, BKCa, KIR6.1, and TASK1 were all demonstrated at the protein level. Pharmacological manipulation of voltage-gated and ATP-sensitive channels produced the most marked modifications in vascular tone, in both arteries and veins. We conclude that K channels play an important role in controlling placental vascular function. 相似文献