首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1453篇
  免费   140篇
  国内免费   93篇
  2024年   5篇
  2023年   13篇
  2022年   44篇
  2021年   73篇
  2020年   36篇
  2019年   56篇
  2018年   43篇
  2017年   30篇
  2016年   49篇
  2015年   87篇
  2014年   104篇
  2013年   105篇
  2012年   130篇
  2011年   117篇
  2010年   61篇
  2009年   52篇
  2008年   61篇
  2007年   72篇
  2006年   62篇
  2005年   43篇
  2004年   42篇
  2003年   59篇
  2002年   40篇
  2001年   31篇
  2000年   27篇
  1999年   26篇
  1998年   13篇
  1997年   15篇
  1996年   11篇
  1995年   20篇
  1994年   13篇
  1993年   15篇
  1992年   22篇
  1991年   11篇
  1990年   9篇
  1989年   9篇
  1988年   14篇
  1987年   10篇
  1986年   3篇
  1985年   7篇
  1983年   4篇
  1982年   4篇
  1980年   6篇
  1979年   4篇
  1978年   5篇
  1975年   2篇
  1974年   4篇
  1973年   4篇
  1972年   4篇
  1970年   2篇
排序方式: 共有1686条查询结果,搜索用时 18 毫秒
111.
Posters Part 1     
Schima superba and Pinus massoniana distributed over large areas in southern China both are dominant species at Dinghushan Biosphere Reserve. In the present study, the changes of chlorophyll fluorescence and xanthophyll cycle in the leaves of S. superba and P. massoniana exposed to simulated acid rain (SAR) were measured. When exposed to high light, the PSII photochemistry efficiency (F v/F m), efficiency of energy conversion in PSII (ΦPSII) and photochemical quenching (qP) of both S. superba and P. massoniana all decreased when acidity of SAR increased. Regarding non-photochemical quenching (qN), S. superba exposed to SAR had higher value than control plants, but there was no significant difference between the respective seedlings of P. massoniana. As for xanthophyll cycle of the two plant species, the leaves of S. superba exposed to SAR showed a higher content of carotenoids and a higher ability to convert violaxanthin to zeaxanthin than leaves of P. massoniana, which was consistent with S. superba exhibiting a stronger resistance to high light than P. massoniana. Although both species were susceptible to acid rain as shown by our results, P. massoniana was more susceptible compared to S. superba. These results provide an insight into how to protect the forest ecosystem at Dinghushan Biosphere Reserve.  相似文献   
112.
113.
Inflammatory and oxidative events are present in neurodegenerative disorders and appear to contribute to initiation and/or progression of the disease. Within the brain, redox-active metals, such as manganese, play an important role as components of proteins essential for neural function. However, increasing evidence implies its participation in neurodegenerative diseases involving immune modulation. Prostaglandins (PGs) are lipid mediators that participate in the regulation of physiological and pathophysiological processes, particularly during brain inflammation. In this study, we investigated whether the immune modulating action of manganese involved regulation of PGE2 production in cortical astrocytes. Within non-toxic concentrations, manganese caused an elevation in the expression of cyclooxygenase-2 (COX-2) mRNA and protein and increased PGE2 release. Manganese potentiated COX-2 expression and PGE2 generation by lipopolysaccharide/interferon-γ-activated astrocytes. The inductive action of manganese was accompanied by generation of oxidative stress, activation of mitogen-activated protein kinases (MAPKs), AKT, and protein kinase C- (PKC-), and increased NF-κB and AP-1 DNA binding activities. The generation of reactive oxygen species (ROS) was critical to manganese-induced changes in astrocytes, including MAPKs, PKC-, NF-κB, AP-1, and COX-2 expression but not AKT. Collectively, these data indicate that manganese might cause changes in neural activity through the modulation of oxidative and inflammatory events in astrocytes.  相似文献   
114.
Structural evolution of C-terminal domains in the p53 family   总被引:1,自引:0,他引:1  
Ou HD  Löhr F  Vogel V  Mäntele W  Dötsch V 《The EMBO journal》2007,26(14):3463-3473
The tetrameric state of p53, p63, and p73 has been considered one of the hallmarks of this protein family. While the DNA binding domain (DBD) is highly conserved among vertebrates and invertebrates, sequences C-terminal to the DBD are highly divergent. In particular, the oligomerization domain (OD) of the p53 forms of the model organisms Caenorhabditis elegans and Drosophila cannot be identified by sequence analysis. Here, we present the solution structures of their ODs and show that they both differ significantly from each other as well as from human p53. CEP-1 contains a composite domain of an OD and a sterile alpha motif (SAM) domain, and forms dimers instead of tetramers. The Dmp53 structure is characterized by an additional N-terminal beta-strand and a C-terminal helix. Truncation analysis in both domains reveals that the additional structural elements are necessary to stabilize the structure of the OD, suggesting a new function for the SAM domain. Furthermore, these structures show a potential path of evolution from an ancestral dimeric form over a tetrameric form, with additional stabilization elements, to the tetramerization domain of mammalian p53.  相似文献   
115.
116.
In the present study, we demonstrate that AC5 (type V adenylate cyclase) interacts with Ric8a through directly interacting at its N-terminus. Ric8a was shown to be a GEF (guanine nucleotide exchange factor) for several alpha subunits of heterotrimeric GTP binding proteins (Galpha proteins) in vitro. Selective Galpha targets of Ric8a have not yet been revealed in vivo. An interaction between AC5 and Ric8a was verified by pull-down assays, co-immunoprecipitation analyses, and co-localization in the brain. Expression of Ric8a selectively suppressed AC5 activity. Treating cells with pertussis toxin or expressing a dominant negative Galphai mutant abolished the suppressive effect of Ric8a, suggesting that interaction between the N-terminus of AC5 and a GEF (Ric8a) provides a novel pathway to fine-tune AC5 activity via a Galphai-mediated pathway.  相似文献   
117.
118.
Ischemic preconditioning (IPC) strongly protects against ischemia-reperfusion injury; however, its effect on subsequent myocardial oxygenation is unknown. Therefore, we determine in an in vivo mouse model of regional ischemia and reperfusion (I/R) if IPC attenuates postischemic myocardial hyperoxygenation and decreases formation of reactive oxygen/nitrogen species (ROS/RNS), with preservation of mitochondrial function. The following five groups of mice were studied: sham, control (I/R), ischemic preconditioning (IPC + I/R, 3 cycles of 5 min coronary occlusion/5 min reperfusion) and IPC + I/R N(G)-nitro-L-arginine methyl ester treated, and IPC + I/R eNOS knockout mice. I/R and IPC + I/R mice were subjected to 30 min regional ischemia followed by 60 min reperfusion. Myocardial Po(2) and redox state were monitored by electron paramagnetic resonance spectroscopy. In the IPC + I/R, but not the I/R group, regional blood flow was increased after reperfusion. Po(2) upon reperfusion increased significantly above preischemic values in I/R but not in IPC + I/R mice. Tissue redox state was measured from the reduction rate of a spin probe, and this rate was 60% higher in IPC than in non-IPC hearts. Activities of NADH dehydrogenase (NADH-DH) and cytochrome c oxidase (CcO) were reduced in I/R mice after 60 min reperfusion but conserved in IPC + I/R mice compared with sham. There were no differences in NADH-DH and CcO expression in I/R and IPC + I/R groups compared with sham. After 60 min reperfusion, strong nitrotyrosine formation was observed in I/R mice, but only weak staining was observed in IPC + I/R mice. Thus IPC markedly attenuates postischemic myocardial hyperoxygenation with less ROS/RNS generation and preservation of mitochondrial O(2) metabolism because of conserved NADH-DH and CcO activities.  相似文献   
119.
Khan AA  Sun Y  Jin K  Mao XO  Chen S  Ellerby LM  Greenberg DA 《Gene》2007,398(1-2):172-176
Neuroglobin (Ngb) is a recently discovered vertebrate globin expressed primarily in neurons. Ngb expression is induced by hypoxia and ischemia, and Ngb protects neurons from these insults. However, its normal physiological role and the mechanism underlying its neuroprotective action are uncertain. We report production of a transgenic mouse in which Ngb is overexpressed under the control of the chicken beta-actin promoter. This mouse should prove helpful for studying Ngb-mediated effects in vitro and in vivo.  相似文献   
120.
The antiallergic activity of Polygoni cuspidati radix (PR) and the mechanism of action by which it functions were investigated in this study. The extract of PR exhibited potent inhibitory activity in mast cells; its IC50 values were 62 +/- 2.1 microg/ml for RBL-2H3 mast cells and 46 +/- 3.2 microg/m for bone marrow-derived mast cells by antigen stimulation, and it also suppressed the expression of tumor necrosis factor-alpha and interleukin-4 in RBL-2H3 cells. According to the in vivo animal allergy model, it inhibited a local allergic reaction, passive cutaneous anaphylaxis, in a dose-dependent manner. With regard to its mechanism of action, PR inhibited the activating phosphorylation of Syk, a key signaling protein for the activation of mast cells. It also suppressed Akt and the mitogen-activated protein kinases ERK1/2, p38, and JNK, which are critical for the production of various inflammatory cytokines in mast cells. The results of the study indicate that the antiallergic activity of PR is mediated through the inhibition of histamine release and allergic cytokine production by the inhibition of Syk activating phosphorylation in mast cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号