首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11247篇
  免费   926篇
  国内免费   759篇
  2024年   8篇
  2023年   184篇
  2022年   292篇
  2021年   624篇
  2020年   402篇
  2019年   517篇
  2018年   537篇
  2017年   348篇
  2016年   511篇
  2015年   715篇
  2014年   794篇
  2013年   920篇
  2012年   1075篇
  2011年   931篇
  2010年   575篇
  2009年   496篇
  2008年   536篇
  2007年   494篇
  2006年   430篇
  2005年   363篇
  2004年   304篇
  2003年   227篇
  2002年   187篇
  2001年   203篇
  2000年   170篇
  1999年   174篇
  1998年   101篇
  1997年   124篇
  1996年   108篇
  1995年   88篇
  1994年   92篇
  1993年   49篇
  1992年   75篇
  1991年   55篇
  1990年   44篇
  1989年   46篇
  1988年   38篇
  1987年   27篇
  1986年   19篇
  1985年   22篇
  1984年   12篇
  1983年   9篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
181.
182.
种间的遗传差异是物种分类和确定保护管理单元的基础,本研究利用DNA条形码技术对未知样本进行鉴定,通过NCBI进行BLAST得到结果是:与绿孔雀的同源性为96%。近一步通过对蓝孔雀(Pavo cristatus)和绿孔雀(Pavo muticus)线粒体细胞色素C氧化酶Ⅰ(cytochrome coxidaseⅠ,COⅠ)基因及线粒体基因组的比较分析,结果表明两物种间的COⅠ基因在碱基组成、核苷酸多样性等各项指标上均具有明显差异。遗传距离分析结果表明蓝孔雀与绿孔雀种内遗传距离为分别0和0.012,种间遗传距离为0.045,表明种间仍具有明显的遗传差异。通过对两物种线粒体基因组各基因的比较分析,发现ND1基因变异位点所占比例相对较高,考虑作为绿孔雀和蓝孔雀种群遗传学研究的最优分子标记。本研究将为分析孔雀类群间的系统发育及制定绿孔雀的保护措施提供了更多科学依据。  相似文献   
183.
Despite their important roles in host nutrition and metabolism, and potential to cause disease, our knowledge of the fungal community in the mammalian gut is quite limited. To date, diversity and composition of fungi in swine gut still remains unknown. Therefore, the first internal transcribed spacer of fungi in faecal samples from three breeds of pigs (10 pigs for each breed) was sequenced based on an Illumina HiSeq 2500 platform, and the relationship between the fungal community and the concentrations of main short-chain fatty acids (SCFAs) was also analysed. Results indicated that Chenghua (local, higher body fat rate), Yorkshire (foreign, higher lean meat and growth rate) and Tibetan (plateau, stronger disease resistance) pigs harboured distinct fungal community. The Basidiomycota and Ascomycota presented as the two predominant phyla, with Loreleia, Russula and Candida as the top three genera in all samples. Network analysis revealed a total of 35 correlations among different fungal genera, with 27 (77.14%) positive and 8 (22.86%) negative pairwise interactions. Canonical correspondence analysis suggested that fungi in the faeces of pigs were more correlated to the concentration of acetate and butyrate rather than propionate. Spearman’s correlation further showed that Tomentella was positively correlated to both acetate and butyrate, and Loreleia was positively correlated to propionate (P < 0.05), while Nephroma and Taiwanofungus were negatively correlated to acetate and propionate (P < 0.05). These findings expanded our knowledge on the intestinal fungi in pigs with different genotypes and phenotypes, indicating that fungi may play an indispensable role during the metabolism of host and the maintenance of intestinal health. The cross-feeding between fungi and other microorganisms may be crucial during the digestion of dietary carbohydrates and the associated physiological processes, which is worthy to be further studied.  相似文献   
184.
Agricultural soils have tremendous potential to sequester soil organic carbon (SOC) and mitigate global climate change. However, agricultural land use has a profound impact on SOC dynamics, and few studies have explored how agricultural land use combined with soil conditions affect SOC changes throughout the soil profile. Based on a paired soil resampling campaign in the 1980s and 2010s, this study investigated the SOC changes of the soil profile caused by agricultural land use and the correlations with parent material and topography across the Chengdu Plain of China. The results showed that the SOC content increased by 3.78 g C/kg in the topsoil (0–20 cm), but decreased in the 20–40 cm and 40–60 cm soil layers by 0.90 and 1.26 g C/kg respectively. SOC increases in topsoil were observed for all types of agricultural land. Afforestation on former agricultural land also caused SOC decreases in the 20–60 cm soil layers, while SOC decreases only occurred in the 40–60 cm soil layer for agricultural land using a traditional crop rotation (i.e. traditional rice–wheat/rapeseed rotation) and with rice–vegetable rotations converted from the traditional rotations. For each agricultural land use, SOC decreases in deep soils only occurred in high relief areas and in soils formed from Q4 (Quaternary Holocene) grey‐brown alluvium and Q4 grey alluvium that had a relatively low soil bulk density and clay content. The results indicated that SOC change caused by agricultural land use was depth dependent and that the effects of agricultural land use on soil profile SOC dynamics varied with soil characteristics and topography. Subsoil SOC decreases were more likely to occur in high relief areas and in soils with low soil bulk density and low clay content.  相似文献   
185.
Soil organic carbon (SOC), the largest terrestrial carbon pool, plays a significant role in soil‐related ecosystem services such as climate regulation, soil fertility and agricultural production. However, its fate under land use change is difficult to predict. A major issue is that SOC comprised of numerous organic compounds with potentially distinct and poorly understood turnover properties. Here we use spatiotemporal measurements of the particulate (POC), mineral‐associated (MOC) and charred SOC (COC) fractions from 176 trials involving changes in land use to assess their underlying controls. We find that the initial pool sizes of each of the three fractions consistently and dominantly control their temporal dynamics after changes in land use (i.e. the baseline effects). The effects of climate, soil physicochemical properties and plant residues, however, are fraction‐ and time‐dependent. Climate and soil properties show similar importance for controlling the dynamics of MOC and COC, while plant residue inputs (in term of their quantity and quality) are much less important. For POC, plant residues and management practices (e.g. the frequency of pasture in crop‐pasture rotation systems) are substantially more important, overriding the influence of climate. These results demonstrate the pivotal role of measuring SOC composition and considering fraction‐specific stabilization and destabilization processes for effective SOC management and reliable SOC predictions.  相似文献   
186.
187.
188.
189.
Gold nanoparticles (AuNPs) exhibit characteristic absorption peaks in the ultraviolet visible region due to their special surface plasmon resonance effect. This characteristic absorption peak would change with the relative colour varying from wine red to orange‐yellow upon sequential addition of ascorbic acid (AA) into the mixture of AuNPs and Ag(I). Similar observations also could be found when the hydrolysis product of sodium l ‐ascorbyl‐2‐phosphate with alkaline phosphatase (ALP) was used as an alternative to AA. Results of structure characterization confirmed that the phenomena were due to the reduction of Ag(I) to Ag(0) on the surface of AuNPs and the formation of core‐shell AuNPs@Ag. Therefore, a colorimetric assay for rapid visual detection of AA and ALP based on redox‐modulated silver deposition on AuNPs has been proposed. Under the optimal experimental conditions, the absorbance variation ΔA522 nm/A370 nm of AuNPs was proportional to the concentration of AA (5–60 μmol/L) and ALP (3–18 U/L) with the corresponding detection limit of 2.44 μmol/L for AA and 0.52 U/L for ALP. The assay showed excellent selectivity towards AA and ALP. Moreover, the assay has been applied to detect AA and ALP activity in real samples with satisfying results.  相似文献   
190.
γ‐Aminobutyrate (GABA) is commonly used as a food supplement and a health care product by young females, due to its positive roles in relieving stress, alleviating anxiety, and improving sleep. However, its recommended daily dose in different products varies widely. Besides, it is unknown whether, and how, GABA consumption during early pregnancy influences pregnancy establishment. In this study, we found that when pregnant mice were treated with a high (12.5 mg/g) dose of GABA (orally) during preimplantation, there was a reduction in the number of implantation sites on day 5 of pregnancy. Also, among these unimplanted embryos, most exhibited morphological degeneration and developmental retardation, and only a few of them developed into blastocysts but could not implant into the uterus. Moreover, the expression of uterine receptivity–related factors—LIF, E‐cadherin, and HOXA10—were all downregulated, while the number of uterine glands was reduced in the high GABA dose group. Finally, in vitro results demonstrated that GABA (ranging from 10 to 50 μg/μL) markedly inhibited preimplantation embryo development in a dose‐response manner. However, this inhibitory effect was not observed when the embryos were pretreated with 40 μΜ 2‐hydroxysaclofen, a GABAB antagonist, indicating that GABA exerts its inhibitory effects via its B‐type receptor. Our results suggest that exposure to certain GABA concentrations, during early pregnancy, can impair preimplantation embryo development via its B‐type receptor, and endometrial receptivity, which greatly disturbs early embryo implantation in mice. These findings could raise concerns about GABA consumption during the early stages of pregnancy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号