全文获取类型
收费全文 | 9158篇 |
免费 | 688篇 |
国内免费 | 769篇 |
专业分类
10615篇 |
出版年
2024年 | 18篇 |
2023年 | 127篇 |
2022年 | 294篇 |
2021年 | 503篇 |
2020年 | 308篇 |
2019年 | 438篇 |
2018年 | 399篇 |
2017年 | 251篇 |
2016年 | 425篇 |
2015年 | 588篇 |
2014年 | 696篇 |
2013年 | 785篇 |
2012年 | 882篇 |
2011年 | 761篇 |
2010年 | 436篇 |
2009年 | 432篇 |
2008年 | 457篇 |
2007年 | 396篇 |
2006年 | 358篇 |
2005年 | 259篇 |
2004年 | 251篇 |
2003年 | 203篇 |
2002年 | 148篇 |
2001年 | 135篇 |
2000年 | 121篇 |
1999年 | 102篇 |
1998年 | 100篇 |
1997年 | 91篇 |
1996年 | 83篇 |
1995年 | 71篇 |
1994年 | 64篇 |
1993年 | 47篇 |
1992年 | 80篇 |
1991年 | 47篇 |
1990年 | 33篇 |
1989年 | 38篇 |
1988年 | 22篇 |
1987年 | 25篇 |
1986年 | 25篇 |
1985年 | 24篇 |
1984年 | 11篇 |
1983年 | 9篇 |
1982年 | 10篇 |
1981年 | 6篇 |
1980年 | 5篇 |
1979年 | 9篇 |
1976年 | 4篇 |
1973年 | 5篇 |
1971年 | 4篇 |
1968年 | 6篇 |
排序方式: 共有10000条查询结果,搜索用时 26 毫秒
31.
32.
Creatine kinase (CK, EC 2.7.3.2) plays a key role in the energy homeostasis of excitable cells. The cytosolic human CK isoenzymes exist as homodimers (HMCK and HBCK) or a heterodimer (MBCK) formed by the muscle CK subunit (M) and/or brain CK subunit (B) with highly conserved three-dimensional structures composed of a small N-terminal domain (NTD) and a large C-terminal domain (CTD). The isoforms of CK provide a novel system to investigate the sequence/structural determinants of multimeric/multidomain protein folding. In this research, the role of NTD and CTD as well as the domain interactions in CK folding was investigated by comparing the equilibrium and kinetic folding parameters of HMCK, HBCK, MBCK and two domain-swapped chimeric forms (BnMc and MnBc). Spectroscopic results indicated that the five proteins had distinct structural features depending on the domain organizations. MBCK BnMc had the smallest CD signals and the lowest stability against guanidine chloride-induced denaturation. During the biphasic kinetic refolding, three proteins (HMCK, BnMc and MnBc), which contained either the NTD or CTD of the M subunit and similar microenvironments of the Trp fluorophores, refolded about 10-fold faster than HBCK for both the fast and slow phase. The fast folding of these three proteins led to an accumulation of the aggregation-prone intermediate and slowed down the reactivation rate thereby during the kinetic refolding. Our results suggested that the intra- and inter-subunit domain interactions modified the behavior of kinetic refolding. The alternation of domain interactions based on isoenzymes also provides a valuable strategy to improve the properties of multidomain enzymes in biotechnology. 相似文献
33.
Aolin Jia Yan Ren Fengmei Gao Guihong Yin Jindong Liu Lu Guo Jizhou Zheng Zhonghu He Xianchun Xia 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2018,131(5):1063-1071
Key message
Four QTLs for adult-plant resistance to powdery mildew were mapped in the Zhou8425B/Chinese Spring population, and a new QTL on chromosome 3B was validated in 103 wheat cultivars derived from Zhou8425B.Abstract
Zhou8425B is an elite wheat (Triticum aestivum L.) line widely used as a parent in Chinese wheat breeding programs. Identification of genes for adult-plant resistance (APR) to powdery mildew in Zhou8425B is of high importance for continued controlling the disease. In the current study, the high-density Illumina iSelect 90K single-nucleotide polymorphism (SNP) array was used to map quantitative trait loci (QTL) for APR to powdery mildew in 244 recombinant inbred lines derived from the cross Zhou8425B/Chinese Spring. Inclusive composite interval mapping identified QTL on chromosomes 1B, 3B, 4B, and 7D, designated as QPm.caas-1BL.1, QPm.caas-3BS, QPm.caas-4BL.2, and QPm.caas-7DS, respectively. Resistance alleles at the QPm.caas-1BL.1, QPm.caas-3BS, and QPm.caas-4BL.2 loci were contributed by Zhou8425B, whereas that at QPm.caas-7DS was from Chinese Spring. QPm.caas-3BS, likely to be a new APR gene for powdery mildew resistance, was detected in all four environments. One SNP marker closely linked to QPm.caas-3BS was transferred into a semi-thermal asymmetric reverse PCR (STARP) marker and tested on 103 commercial wheat cultivars derived from Zhou8425B. Cultivars with the resistance allele at the QPm.caas-3BS locus had averaged maximum disease severity reduced by 5.3%. This STARP marker can be used for marker-assisted selection in improvement of the level of powdery mildew resistance in wheat breeding.34.
SiuShing Wong Zachary M Wilmott Saroj Saurya Ines AlvarezRodrigo Felix Y Zhou KwaiYin Chau Alain Goriely Jordan W Raff 《The EMBO journal》2022,41(11)
Mitotic centrosomes are formed when centrioles start to recruit large amounts of pericentriolar material (PCM) around themselves in preparation for mitosis. This centrosome “maturation” requires the centrioles and also Polo/PLK1 protein kinase. The PCM comprises several hundred proteins and, in Drosophila, Polo cooperates with the conserved centrosome proteins Spd‐2/CEP192 and Cnn/CDK5RAP2 to assemble a PCM scaffold around the mother centriole that then recruits other PCM client proteins. We show here that in Drosophila syncytial blastoderm embryos, centrosomal Polo levels rise and fall during the assembly process—peaking, and then starting to decline, even as levels of the PCM scaffold continue to rise and plateau. Experiments and mathematical modelling indicate that a centriolar pulse of Polo activity, potentially generated by the interaction between Polo and its centriole receptor Ana1 (CEP295 in humans), could explain these unexpected scaffold assembly dynamics. We propose that centrioles generate a local pulse of Polo activity prior to mitotic entry to initiate centrosome maturation, explaining why centrioles and Polo/PLK1 are normally essential for this process. 相似文献
35.
Xiaogang Gu John Glushka Yanbin Yin Ying Xu Timothy Denny James Smith Yingnan Jiang Maor Bar-Peled 《The Journal of biological chemistry》2010,285(12):9030-9040
The UDP-sugar interconverting enzymes involved in UDP-GlcA metabolism are well described in eukaryotes but less is known in prokaryotes. Here we identify and characterize a gene (RsU4kpxs) from Ralstonia solanacearum str. GMI1000, which encodes a dual function enzyme not previously described. One activity is to decarboxylate UDP-glucuronic acid to UDP-β-l-threo-pentopyranosyl-4″-ulose in the presence of NAD+. The second activity converts UDP-β-l-threo-pentopyranosyl-4″-ulose and NADH to UDP-xylose and NAD+, albeit at a lower rate. Our data also suggest that following decarboxylation, there is stereospecific protonation at the C5 pro-R position. The identification of the R. solanacearum enzyme enables us to propose that the ancestral enzyme of UDP-xylose synthase and UDP-apiose/UDP-xylose synthase was diverged to two distinct enzymatic activities in early bacteria. This separation gave rise to the current UDP-xylose synthase in animal, fungus, and plant as well as to the plant Uaxs and bacterial ArnA and U4kpxs homologs. 相似文献
36.
Paek Hyo-Jin Luo Zhao-Bo Choe Hak-Myong Quan Biao-Hu Gao Kai Han Sheng-Zhong Li Zhou-Yan Kang Jin-Dan Yin Xi-Jun 《Transgenic research》2021,30(5):663-674
Transgenic Research - Herein, we investigate the high incidence of umbilical hernia and tippy-toe standing and their underlying changes in gene expression and proliferation in myostatin knockout... 相似文献
37.
38.
Liyuan Ma Qian Li Li Shen Xue Feng Yunhua Xiao Jiemeng Tao Yili Liang Huaqun Yin Xueduan Liu 《Journal of industrial microbiology & biotechnology》2016,43(10):1441-1453
Acidophilic microorganisms involved in uranium bioleaching are usually suppressed by dissolved fluoride ions, eventually leading to reduced leaching efficiency. However, little is known about the regulation mechanisms of microbial resistance to fluoride. In this study, the resistance of Acidithiobacillus ferrooxidans ATCC 23270 to fluoride was investigated by detecting bacterial growth fluctuations and ferrous or sulfur oxidation. To explore the regulation mechanism, a whole genome microarray was used to profile the genome-wide expression. The fluoride tolerance of A. ferrooxidans cultured in the presence of FeSO4 was better than that cultured with the S0 substrate. The differentially expressed gene categories closely related to fluoride tolerance included those involved in energy metabolism, cellular processes, protein synthesis, transport, the cell envelope, and binding proteins. This study highlights that the cellular ferrous oxidation ability was enhanced at the lower fluoride concentrations. An overview of the cellular regulation mechanisms of extremophiles to fluoride resistance is discussed. 相似文献
39.
Zhang Qi Li Yanan Yin Chunping Yu Jiaxu Zhao Juan Yan Lirong Wang Qiujun 《Neurochemical research》2022,47(6):1751-1764
Neurochemical Research - Postoperative cognitive dysfunction (POCD) remains one of the most common complications following anesthesia and surgery (AS) in the elderly population. Calcium-mediated... 相似文献
40.
Chuntao Yin Scot H. Hulbert Kurtis L. Schroeder Olga Mavrodi Dmitri Mavrodi Amit Dhingra William F. Schillinger Timothy C. Paulitz 《Applied and environmental microbiology》2013,79(23):7428-7438
Rhizoctonia bare patch and root rot disease of wheat, caused by Rhizoctonia solani AG-8, develops as distinct patches of stunted plants and limits the yield of direct-seeded (no-till) wheat in the Pacific Northwest of the United States. At the site of a long-term cropping systems study near Ritzville, WA, a decline in Rhizoctonia patch disease was observed over an 11-year period. Bacterial communities from bulk and rhizosphere soil of plants from inside the patches, outside the patches, and recovered patches were analyzed by using pyrosequencing with primers designed for 16S rRNA. Taxa in the class Acidobacteria and the genus Gemmatimonas were found at higher frequencies in the rhizosphere of healthy plants outside the patches than in that of diseased plants from inside the patches. Dyella and Acidobacteria subgroup Gp7 were found at higher frequencies in recovered patches. Chitinophaga, Pedobacter, Oxalobacteriaceae (Duganella and Massilia), and Chyseobacterium were found at higher frequencies in the rhizosphere of diseased plants from inside the patches. For selected taxa, trends were validated by quantitative PCR (qPCR), and observed shifts of frequencies in the rhizosphere over time were duplicated in cycling experiments in the greenhouse that involved successive plantings of wheat in Rhizoctonia-inoculated soil. Chryseobacterium soldanellicola was isolated from the rhizosphere inside the patches and exhibited significant antagonism against R. solani AG-8 in vitro and in greenhouse tests. In conclusion, we identified novel bacterial taxa that respond to conditions affecting bare patch disease symptoms and that may be involved in suppression of Rhizoctonia root rot and bare batch disease. 相似文献