首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7686篇
  免费   675篇
  国内免费   859篇
  2024年   33篇
  2023年   155篇
  2022年   337篇
  2021年   450篇
  2020年   334篇
  2019年   466篇
  2018年   387篇
  2017年   271篇
  2016年   387篇
  2015年   521篇
  2014年   591篇
  2013年   622篇
  2012年   681篇
  2011年   583篇
  2010年   358篇
  2009年   330篇
  2008年   362篇
  2007年   313篇
  2006年   290篇
  2005年   206篇
  2004年   237篇
  2003年   204篇
  2002年   163篇
  2001年   155篇
  2000年   117篇
  1999年   94篇
  1998年   74篇
  1997年   54篇
  1996年   81篇
  1995年   64篇
  1994年   50篇
  1993年   27篇
  1992年   42篇
  1991年   32篇
  1990年   31篇
  1989年   21篇
  1988年   24篇
  1987年   16篇
  1986年   12篇
  1985年   18篇
  1984年   6篇
  1983年   7篇
  1982年   5篇
  1981年   4篇
  1958年   1篇
  1957年   1篇
  1954年   2篇
  1952年   1篇
排序方式: 共有9220条查询结果,搜索用时 15 毫秒
171.
摘要目的:探讨沉默交配型信息调节因子2同源蛋白1(silentmatingtypeinformationregulation2homologyl,SIRTl)在宫颈癌化疗耐药中的作用及其机制。方法:体外培养人宫颈癌Hela细胞系和宫颈癌Hela/MMC耐药细胞亚系,westernblotting检测MMC对Hela和Hela/MMC细胞内SIRTl蛋白表达的影响;MTT法检测MMC及Nicotinamide对Hela和Hela/MMC细胞增殖的影响;AnnexinV-PI试验检测Hela/MMC细胞凋亡的亡的情况;RT—PCR方法检测耐药相关蛋白P—gP的mRNA表达情况。结果:正常情况下,Hela/MMC细胞中SIRTl的表达显著高于Hela细胞(P〈0.05),MMC处理的Hela/MMC细胞中SIRTl的表达显著高于未经MMC处理(P〈0.05)。Nicotinamide对Hela和Hela/MMC细胞具有相似的生长抑制作用,Nicotinamide可使MMC诱导的Hela/MMC细胞凋亡增加,同时降低细胞内P-gP的mRNA表达(P〈0.05)。结论:SIRTl表达下调能显著减轻Hela/MMC细胞对MMC的耐药性,其作用可能与P—gp有关。  相似文献   
172.
173.
174.
Rabbit hemorrhagic disease, first described in China in 1984, causes hemorrhagic necrosis of the liver. Its etiological agent, rabbit hemorrhagic disease virus (RHDV), belongs to the Lagovirus genus in the family Caliciviridae. The detailed molecular structure of any lagovirus capsid has yet to be determined. Here, we report a cryo-electron microscopic (cryoEM) reconstruction of wild-type RHDV at 6.5 Å resolution and the crystal structures of the shell (S) and protruding (P) domains of its major capsid protein, VP60, each at 2.0 Å resolution. From these data we built a complete atomic model of the RHDV capsid. VP60 has a conserved S domain and a specific P2 sub-domain that differs from those found in other caliciviruses. As seen in the shell portion of the RHDV cryoEM map, which was resolved to ∼5.5 Å, the N-terminal arm domain of VP60 folds back onto its cognate S domain. Sequence alignments of VP60 from six groups of RHDV isolates revealed seven regions of high variation that could be mapped onto the surface of the P2 sub-domain and suggested three putative pockets might be responsible for binding to histo-blood group antigens. A flexible loop in one of these regions was shown to interact with rabbit tissue cells and contains an important epitope for anti-RHDV antibody production. Our study provides a reliable, pseudo-atomic model of a Lagovirus and suggests a new candidate for an efficient vaccine that can be used to protect rabbits from RHDV infection.  相似文献   
175.
Mitochondrial m.14484T>C (MT-ND6) mutation has been associated with Leber's hereditary optic neuropathy. Previous investigations revealed that the m.14484T>C mutation is a primary factor underlying the development of optic neuropathy but is not sufficient to produce a clinical phenotype. However, mitochondrial haplogroups have been proposed to modulate the phenotypic manifestation of the m.14484T>C mutation. Here, we performed the clinical, genetic evaluation and complete mitochondrial genome sequence analysis of 41 Han Chinese pedigrees carrying the m.14484T>C mutation. These families exhibited a wide range of penetrances and expressivities of optic neuropathy. The average ratio between affected male/female matrilineal relatives from 41 families was 2:1. The penetrance of optic neuropathy in these Chinese pedigrees ranged from 5.6% to 100%, with the average of 23.8%. Furthermore, the age-of-onset for optic neuropathy varied from 4 to 44 years, with the average of 19.3 years. Sequence analysis of their mitochondrial genomes identified distinct sets of polymorphisms belonging to ten Eastern Asian haplogroups, indicating that the m.14484T>C mutation occurred through recurrent origins and founder events. We showed that mitochondrial haplogroups M9, M10 and N9 increased the penetrance of optic neuropathy in these Chinese families. In particular, these mitochondrial haplogroup specific variants: m.3394T>C (MT-ND1), m.14502T>C (MT-ND4) and m.14693A>G (MT-TE) enhanced the penetrance of visual loss in these Chinese families. These data provided the direct evidence that mitochondrial modifiers modulate the variable penetrance and expressivity of optic neuropathy among Chinese pedigrees carrying the m.14484T>C mutation.  相似文献   
176.
All non-human great apes are endangered in the wild, and it is therefore important to gain an understanding of their demography and genetic diversity. Whole genome assembly projects have provided an invaluable foundation for understanding genetics in all four genera, but to date genetic studies of multiple individuals within great ape species have largely been confined to mitochondrial DNA and a small number of other loci. Here, we present a genome-wide survey of genetic variation in gorillas using a reduced representation sequencing approach, focusing on the two lowland subspecies. We identify 3,006,670 polymorphic sites in 14 individuals: 12 western lowland gorillas (Gorilla gorilla gorilla) and 2 eastern lowland gorillas (Gorilla beringei graueri). We find that the two species are genetically distinct, based on levels of heterozygosity and patterns of allele sharing. Focusing on the western lowland population, we observe evidence for population substructure, and a deficit of rare genetic variants suggesting a recent episode of population contraction. In western lowland gorillas, there is an elevation of variation towards telomeres and centromeres on the chromosomal scale. On a finer scale, we find substantial variation in genetic diversity, including a marked reduction close to the major histocompatibility locus, perhaps indicative of recent strong selection there. These findings suggest that despite their maintaining an overall level of genetic diversity equal to or greater than that of humans, population decline, perhaps associated with disease, has been a significant factor in recent and long-term pressures on wild gorilla populations.  相似文献   
177.
We have shown that Dicer processes 7SL RNA into different fragments ranging from ∼20 to more than 200 nucleotides. Here we addressed the molecular functions of these 7SL RNA fragments and found that some of them functioned as dominant-negative regulators of the full-length 7SL RNA, interfering with signal recognition particle (SRP) complex formation. Transfection of these 7SL RNA fragments inhibited the expression of cell surface glycoproteins, the targeting of a reporter protein to the endoplasmic reticulum, and the secretion of secreted alkaline phosphatase. These results suggest that some Dicer-processed 7SL RNA fragments interfered with SRP-mediated protein targeting. Moreover, we showed that Dicer knockdown enhanced SRP-mediated protein targeting and that transfection of a mixture of the 7SL RNA fragments partially restored this effect. Our data indicate that Dicer can fine-tune the efficiency of SRP-mediated protein targeting via processing a proportion of 7SL RNA into fragments of different lengths.  相似文献   
178.
Utilization of neuropharmaceuticals for central nervous system(CNS) disease is highly limited due to the blood-brain barrier(BBB) which restricts molecules larger than 500Da from reaching the CNS. The development of a reliable method to bypass the BBB would represent an enormous advance in neuropharmacology enabling the use of many potential disease modifying therapies. Previous attempts such as transcranial catheter implantation have proven to be temporary and associated with multiple complications. Here we describe a novel method of creating a semipermeable window in the BBB using purely autologous tissues to allow for high molecular weight(HMW) drug delivery to the CNS. This approach is inspired by recent advances in human endoscopic transnasal skull base surgical techniques and involves engrafting semipermeable nasal mucosa within a surgical defect in the BBB. The mucosal graft thereby creates a permanent transmucosal conduit for drugs to access the CNS. The main objective of this study was to develop a murine model of this technique and use it to evaluate transmucosal permeability for the purpose of direct drug delivery to the brain. Using this model we demonstrate that mucosal grafts allow for the transport of molecules up to 500 kDa directly to the brain in both a time and molecular weight dependent fashion. Markers up to 40 kDa were found within the striatum suggesting a potential role for this technique in the treatment of Parkinson’s disease. This proof of principle study demonstrates that mucosal engrafting represents the first permanent and stable method of bypassing the BBB thereby providing a pathway for HMW therapeutics directly into the CNS.  相似文献   
179.
Artemether is the derivative extracted from Chinese traditional herb and originally used for malaria. Artemether also has potential therapeutic effects against tumors. Vascular cell adhesion molecule-1 (VCAM-1) is an important cell surface adhesion molecule associated with malignancy of gliomas. In this work, we investigated the role and mechanism of artemether combined with shRNA interference of VCAM-1 (shRNA-VCAM-1) on the migration, invasion and apoptosis of glioma cells. U87 human glioma cells were treated with artemether at various concentrations and shRNA interfering technology was employed to silence the expression of VCAM-1. Cell viability, migration, invasiveness and apoptosis were assessed with MTT, wound healing, Transwell and Annexin V-FITC/PI staining. The expression of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and phosphorylated Akt (p-Akt) was checked by Western blot assay. Results showed that artemether and shRNA-VCAM-1 not only significantly inhibited the migration, invasiveness and expression of MMP-2/9 and p-Akt, but also promoted the apoptosis of U87 cells. Combined treatment of both displayed the maximum inhibitory effects on the malignant biological behavior of glioma cells. Our work revealed the potential therapeutic effects of artemether and antiVCAM-1 in the treatments of gliomas.  相似文献   
180.
miRNA biogenesis enzyme Drosha cleaves double-stranded primary miRNA by interacting with double-stranded RNA binding protein DGCR8 and processes primary miRNA into precursor miRNA to participate in the miRNA biogenesis pathway. The role of Drosha in vascular smooth muscle cells (VSMCs) has not been well addressed. We generated Drosha conditional knockout (cKO) mice by crossing VSMC-specific Cre mice, SM22-Cre, with Drosha loxp/loxp mice. Disruption of Drosha in VSMCs resulted in embryonic lethality at E14.5 with severe liver hemorrhage in mutant embryos. No obvious developmental delay was observed in Drosha cKO embryos. The vascular structure was absent in the yolk sac of Drosha homozygotes at E14.5. Loss of Drosha reduced VSMC proliferation in vitro and in vivo. The VSMC differentiation marker genes, including αSMA, SM22, and CNN1, and endothelial cell marker CD31 were significantly downregulated in Drosha cKO mice compared to controls. ERK1/2 mitogen-activated protein kinase and the phosphatidylinositol 3-kinase/AKT were attenuated in VSMCs in vitro and in vivo. Disruption of Drosha in VSMCs of mice leads to the dysregulation of miRNA expression. Using bioinformatics approach, the interactions between dysregulated miRNAs and their target genes were analyzed. Our data demonstrated that Drosha is required for VSMC survival by targeting multiple signaling pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号