首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37861篇
  免费   3304篇
  国内免费   4814篇
  45979篇
  2024年   154篇
  2023年   652篇
  2022年   1376篇
  2021年   2202篇
  2020年   1552篇
  2019年   2002篇
  2018年   1784篇
  2017年   1316篇
  2016年   1724篇
  2015年   2518篇
  2014年   3077篇
  2013年   3198篇
  2012年   3758篇
  2011年   3271篇
  2010年   2082篇
  2009年   1928篇
  2008年   2067篇
  2007年   1855篇
  2006年   1563篇
  2005年   1339篇
  2004年   1113篇
  2003年   1007篇
  2002年   817篇
  2001年   589篇
  2000年   465篇
  1999年   458篇
  1998年   322篇
  1997年   252篇
  1996年   267篇
  1995年   213篇
  1994年   180篇
  1993年   118篇
  1992年   138篇
  1991年   117篇
  1990年   99篇
  1989年   83篇
  1988年   76篇
  1987年   51篇
  1986年   46篇
  1985年   61篇
  1984年   18篇
  1983年   22篇
  1982年   17篇
  1981年   15篇
  1980年   3篇
  1979年   2篇
  1977年   2篇
  1969年   2篇
  1959年   2篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
The spinocerebellar ataxias (SCAs) are a class of incurable diseases characterized by degeneration of the cerebellum that results in movement disorder. Recently, a new heritable form of SCA, spinocerebellar ataxia type 48 (SCA48), was attributed to dominant mutations in STIP1 homology and U box-containing 1 (STUB1); however, little is known about how these mutations cause SCA48. STUB1 encodes for the protein C terminus of Hsc70 interacting protein (CHIP), an E3 ubiquitin ligase. CHIP is known to regulate proteostasis by recruiting chaperones via a N-terminal tetratricopeptide repeat domain and recruiting E2 ubiquitin-conjugating enzymes via a C-terminal U-box domain. These interactions allow CHIP to mediate the ubiquitination of chaperone-bound, misfolded proteins to promote their degradation via the proteasome. Here we have identified a novel, de novo mutation in STUB1 in a patient with SCA48 encoding for an A52G point mutation in the tetratricopeptide repeat domain of CHIP. Utilizing an array of biophysical, biochemical, and cellular assays, we demonstrate that the CHIPA52G point mutant retains E3-ligase activity but has decreased affinity for chaperones. We further show that this mutant decreases cellular fitness in response to certain cellular stressors and induces neurodegeneration in a transgenic Caenorhabditis elegans model of SCA48. Together, our data identify the A52G mutant as a cause of SCA48 and provide molecular insight into how mutations in STUB1 cause SCA48.  相似文献   
92.
目的 评估GeneXpert MTB/RIF检测肺外结核分枝杆菌的准确性,并与传统方法进行比较。 方法 选取2016年6月至2017年6月在本院就诊的144例疑似肺外结核病患者,对所有标本分别进行金胺“O”荧光染色镜检、液体培养及药敏试验、固体培养及比例法体外药敏试验和Xpert法检测。 结果 收集的144例疑似肺外结核标本中,确诊108例,以胸水、淋巴结活检和脓液感染较多,另36例阴性患者中,10例为非结核分枝杆菌感染。Xpert试验的敏感性为28.73%,特异性为96.00%,其阳性预测值和阴性预测值均高于其他3种检测方法。在阳性检出率方面,Xpert试验高于涂片镜检(χ2=17.39,P2=8.64,P2=2.56,P>0.05)。固体培养、液体培养和Xpert试验3种方法对结核分枝杆菌利福平耐药率检测差异无统计学意义(P>0.05),耐药率分别为8.33%、9.68%和11.11%,且Xpert试验方法检测出2株耐多药结核分枝杆菌,平均耗时2.5 h。 结论 GeneXpert MTB/RIF可以作为一种筛选及快速检测工具应用于肺外结核的诊断,同时可作为检测MDR TB的一种指标。  相似文献   
93.
Mitochondrial impairment is hypothesized to contribute to the pathogenesis of chronic cholestatic liver diseases. Mitofusin 2 (Mfn2) regulates mitochondrial morphology and signaling and is involved in the development of numerous mitochondrial-related diseases; however, a functional role for Mfn2 in chronic liver cholestasis which is characterized by increased levels of toxic bile acids remain unknown. Therefore, the aims of this study were to evaluate the expression levels of Mfn2 in liver samples from patients with extrahepatic cholestasis and to investigate the role Mfn2 during bile acid induced injury in vitro. Endogenous Mfn2 expression decreased in patients with extrahepatic cholestasis. Glycochenodeoxycholic acid (GCDCA) is the main toxic component of bile acid in patients with extrahepatic cholestasis. In human normal hepatocyte cells (L02), Mfn2 plays an important role in GCDCA-induced mitochondrial damage and changes in mitochondrial morphology. In line with the mitochondrial dysfunction, the expression of Mfn2 decreased significantly under GCDCA treatment conditions. Moreover, the overexpression of Mfn2 effectively attenuated mitochondrial fragmentation and reversed the mitochondrial damage observed in GCDCA-treated L02 cells. Notably, a truncated Mfn2 mutant that lacked the normal C-terminal domain lost the capacity to induce mitochondrial fusion. Increasing the expression of truncated Mfn2 also had a protective effect against the hepatotoxicity of GCDCA. Taken together, these findings indicate that the loss of Mfn2 may play a crucial role the pathogenesis of the liver damage that is observed in patients with extrahepatic cholestasis. The findings also indicate that Mfn2 may directly regulate mitochondrial metabolism independently of its primary fusion function. Therapeutic approaches that target Mfn2 may have protective effects against hepatotoxic of bile acids during cholestasis.  相似文献   
94.
95.
In this study, we have demonstrated that the critical hydrogen bonding motif of the established 3-aminopyrazinone thrombin inhibitors can be effectively mimicked by a 2-aminopyridine N-oxide. As this peptidomimetic core is more resistant toward oxidative metabolism, it also overcomes the metabolic liability associated with the pyrazinones. An optimization study of the P(1) benzylamide delivered the potent thrombin inhibitor 21 (K(i) = 3.2 nM, 2xaPTT = 360 nM), which exhibited good plasma levels and half-life after oral dosing in the dog (C(max) = 2.6 microM, t(1/2) = 4.5 h).  相似文献   
96.
A major goal in cell signaling research is the quantification of phosphorylation pharmacodynamics following perturbations. Traditional methods of studying cellular phospho-signaling measure one analyte at a time with poor standardization, rendering them inadequate for interrogating network biology and contributing to the irreproducibility of preclinical research. In this study, we test the feasibility of circumventing these issues by coupling immobilized metal affinity chromatography (IMAC)-based enrichment of phosphopeptides with targeted, multiple reaction monitoring (MRM) mass spectrometry to achieve precise, specific, standardized, multiplex quantification of phospho-signaling responses. A multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay targeting phospho-analytes responsive to DNA damage was configured, analytically characterized, and deployed to generate phospho-pharmacodynamic curves from primary and immortalized human cells experiencing genotoxic stress. The multiplexed assays demonstrated linear ranges of ≥3 orders of magnitude, median lower limit of quantification of 0.64 fmol on column, median intra-assay variability of 9.3%, median inter-assay variability of 12.7%, and median total CV of 16.0%. The multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay enabled robust quantification of 107 DNA damage-responsive phosphosites from human cells following DNA damage. The assays have been made publicly available as a resource to the community. The approach is generally applicable, enabling wide interrogation of signaling networks.Cell signaling research is faced with the challenging task of interrogating increasingly large numbers of analytes in “systems biology” approaches, while maintaining the high standards of integrity and reproducibility traditionally associated with the scientific approach. For example, studies interrogating complex systems, such as protein signaling networks, require quantification technologies capable of sensitive, specific, multiplexable, and reproducible application. However, recent reports have highlighted alarmingly high rates of irreproducibility in fundamental biological and pre-clinical studies (1, 2), as well as poor performance of affinity reagents used in traditional proteomic assay and detection platforms (3, 4). There is an imminent need for high quality assays, including highly characterized standards and detailed documentation of processes and procedures (5). To improve the translation of cell signaling discoveries into clinical application, we need reproducible and transferable technologies that enable higher throughput quantification of protein phosphorylation.Signaling dynamics through post-translational modifications (e.g. phosphorylation) are predominantly measured by Western blotting. Although this technique has led to many discoveries and is the de facto “gold standard,” it suffers from many drawbacks. Western blotting is a low throughput approach applied to individual analytes (i.e. no multiplexing) and is susceptible to erroneous interpretation when applied quantitatively (6). Alternative immunoassay platforms have emerged (e.g. immunohistochemistry, ELISA, mass cytometry, and bead-based or planar arrays), but suffer from similar limitations, namely specificity issues (because of cross-reactivity of antibodies), poor standardization, and difficulties in multiplexing.One alternative for quantifying phosphorylation is targeted, multiple reaction monitoring (MRM)1 MS, a widely deployed technique in clinical laboratories for quantification of small molecules (7, 8). MRM is now also well established for precise and specific quantification of endogenous, proteotypic peptides relative to spiked-in stable isotope-labeled internal standards (911), and MRM can be applied to phosphopeptides (1218). MRM assays can be run at high multiplex levels (1921) and can be standardized to be highly reproducible across laboratories (2224), even on an international stage (25). Because phosphorylation typically occurs at sub-stoichiometric levels and because phosphopeptides must compete for ionization with more abundant peptides, mass spectrometry-based analysis of phosphorylation requires an analyte enrichment step. Immuno-affinity enrichment approaches using anti-phospho-tyrosine antibodies (26) or panels of antibodies targeting signaling nodes (27) have been implemented with shotgun mass spectrometry. Although anti-peptide antibodies can also be used to enrich individual phosphopeptides upstream of MRM (28), the generation of these reagents is time-consuming and costly, limiting widespread uptake.Phosphopeptide enrichment based on metal affinity chromatography has recently matured into a reproducible approach (29). Immobilized metal affinity chromatography (IMAC) is widely used in discovery phosphoproteomic studies to enrich phosphopeptides upstream of shotgun-based mass spectrometry (30, 31). We hypothesized that a subset of the cellular phosphoproteome with favorable binding characteristics to the IMAC resin might be reproducibly recovered for quantification when coupled with quantitative MRM mass spectrometry, enabling robust IMAC-MRM assays without the need for an antibody.In this report, we: (1) demonstrate the feasibility of generating analytically robust, multiplex IMAC-MRM assays for quantifying cellular phospho-signaling, (2) present a semi-automated, 96-well format magnetic bead-based protocol for IMAC enrichment, (3) provide a catalogue of phosphopeptides that are highly amenable to IMAC-MRM quantification, and (4) make publicly available standard operating protocols (SOP) and fit-for-purpose analytical validation data for IMAC-MRM assays targeting 107 phospho-analytes, providing a community resource for study of the DNA damage response. The data suggest that the IMAC-MRM approach is generally applicable to signaling pathways, enabling wider interrogation of signaling networks.  相似文献   
97.
Some properties of the β-N-acetyl-D-hexosaminidase purified from intercellular fluid of tomato leaves after the plant was systematically infected by TMV (tobacco mosaic virus) were studied. When pNP β-D-GlcNAc (p nitrophenyl-N-aeetyl β-D-glucosaminide) or pNP β-D- GalNAc (p-nitrophenyl-N-acetyl-β-D galactosaminide) was used as the substrate, it showed the optical pH between 4. 8--5.0 and optical temperature between 44— 47℃. Studies of thermostabillty indicated that the enzyme had a biphasic denaturation curve. Using pNP-β-D-GIcNAc or pNP-β-D GalNAc as the substrate, the Km value of the enzyme was 0. 36 and 0. 67 mmol/L respectively. N acetyi-D glucosamine and N acetyl-D-galactosamine were competitive inhibitors of the enzyme activities. Ag+ and Hg2+ were sensitive inhibitors and Fe2+ . Fe3+ and Cu2+ were also inhibitors enzyme activities.  相似文献   
98.
99.
Kamal  Osama M.  Shah  Sayyed Hamad Ahmad  Li  Yan  Hou  Xilin  Li  Ying 《Molecular biology reports》2020,47(9):6887-6897
Molecular Biology Reports - The objective of the present work was the selection of cultivar, suitable medium and explant type for callus, root production, ascorbic acid, total ascorbic acid,...  相似文献   
100.
Yang CH  Liu XM  Si JJ  Shi HS  Xue YX  Liu JF  Luo YX  Chen C  Li P  Yang JL  Wu P  Lu L 《PloS one》2012,7(6):e39696
The inhibitor κB protein kinase/nuclear factor κB (IKK/NF-κB) signaling pathway is critical for synaptic plasticity. However, the role of IKK/NF-κB in drug withdrawal-associated conditioned place aversion (CPA) memory is unknown. Here, we showed that inhibition of IKK/NF-κB by sulphasalazine (SSZ; 10 mM, i.c.v.) selectively blocked the extinction but not acquisition or expression of morphine-induced CPA in rats. The blockade of CPA extinction induced by SSZ was abolished by sodium butyrate, an inhibitor of histone deacetylase. Thus, the IKK/NF-κB signaling pathway might play a critical role in the extinction of morphine-induced CPA in rats and might be a potential pharmacotherapy target for opiate addiction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号