首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128337篇
  免费   3226篇
  国内免费   3686篇
  135249篇
  2024年   106篇
  2023年   593篇
  2022年   1315篇
  2021年   2099篇
  2020年   1332篇
  2019年   1754篇
  2018年   13071篇
  2017年   11528篇
  2016年   8819篇
  2015年   2871篇
  2014年   2991篇
  2013年   3305篇
  2012年   7438篇
  2011年   15537篇
  2010年   13541篇
  2009年   9646篇
  2008年   11473篇
  2007年   12825篇
  2006年   1674篇
  2005年   1625篇
  2004年   1965篇
  2003年   1867篇
  2002年   1522篇
  2001年   939篇
  2000年   738篇
  1999年   596篇
  1998年   345篇
  1997年   362篇
  1996年   379篇
  1995年   344篇
  1994年   308篇
  1993年   233篇
  1992年   334篇
  1991年   252篇
  1990年   188篇
  1989年   177篇
  1988年   131篇
  1987年   112篇
  1986年   71篇
  1985年   86篇
  1984年   42篇
  1983年   55篇
  1982年   25篇
  1981年   19篇
  1980年   13篇
  1972年   246篇
  1971年   274篇
  1965年   13篇
  1962年   24篇
  1944年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Copper is both an essential element as a catalytic cofactor and a toxic element because of its redox properties. Once in the cell, Cu(I) binds to glutathione (GSH) and various thiol-rich proteins that sequester and/or exchange copper with other intracellular components. Among them, the Cu(I) chaperone Atx1 is known to deliver Cu(I) to Ccc2, the Golgi Cu–ATPase, in yeast. However, the mechanism for Cu(I) incorporation into Atx1 has not yet been unraveled. We investigated here a possible role of GSH in Cu(I) binding to Atx1. Yeast Atx1 was expressed in Escherichia coli and purified to study its ability to bind Cu(I). We found that with an excess of GSH [at least two GSH/Cu(I)], Atx1 formed a Cu(I)-bridged dimer of high affinity for Cu(I), containing two Cu(I) and two GSH, whereas no dimer was observed in the absence of GSH. The stability constants (log β) of the Cu(I) complexes measured at pH 6 were 15–16 and 49–50 for CuAtx1 and Cu2I(GS)2(Atx1)2, respectively. Hence, these results suggest that in vivo the high GSH concentration favors Atx1 dimerization and that Cu2I(GS)2(Atx1)2 is the major conformation of Atx1 in the cytosol.  相似文献   
962.
963.
964.
Aging process in mammals is associated with a decline in amplitude and a long period of circadian behaviors which are regulated by a central circadian regulator in the suprachiasmatic nucleus (SCN) and local oscillators in peripheral tissues. It is unclear whether enhancing clock function can retard aging. Using fibroblasts expressing per2::lucSV and senescent cells, we revealed cycloastragenol (CAG), a natural aglycone derivative from astragaloside IV, as a clock amplitude enhancing small molecule. CAG could activate telomerase to antiaging, but no reports focused on its effects on circadian rhythm disorders in aging mice. Here we analyze the potential effects of CAG on d -galactose-induced aging mice on the circadian behavior and expression of clock genes. For this purpose, CAG (20 mg/kg orally), was administered daily to d -galactose (150 mg/kg, subcutaneous) mice model of aging for 6 weeks. An actogram analysis of free-running activity of these mice showed that CAG significantly enhances the locomotor activity. We further found that CAG increase expressions of per2 and bmal1 genes in liver and kidney of aging mouse. Furthermore, CAG enhanced clock protein BMAL1 and PER2 levels in aging mouse liver and SCN. Our results indicated that the CAG could restore the behavior of circadian rhythm in aging mice induced by d -galactose. These data of present study suggested that CAG could be used as a novel therapeutic strategy for the treatment of age-related circadian rhythm disruption.  相似文献   
965.
Hatchlings of the painted turtle, Chrysemys picta, hibernate terrestrially and can survive subfreezing temperatures by supercooling or by tolerating the freezing of their tissues. Whether supercooled or frozen, an ischemic hypoxia develops because tissue perfusion is limited by low temperature and/or freezing. Oxidative stress can occur if hatchlings lack sufficient antioxidant defenses to minimize or prevent damage by reactive oxygen species. We examined the antioxidant capacity and indices of oxidative damage in hatchling C. picta following survivable, 48 h bouts of supercooling (−6°C), freezing (−2.5°C), or hypoxia (4°C). Samples of plasma, brain, and liver were collected after a 24 h period of recovery (4°C) and assayed for Trolox-equivalent antioxidant capacity (TEAC), thiobarbituric acid reactive substances (TBARS), and carbonyl proteins. Antioxidant capacity did not vary among treatments in any of the tissues studied. We found a significant increase in TBARS in plasma, but not in the brain or liver, of frozen/thawed hatchlings as compared to untreated controls. No changes were found in the concentration of TBARS or carbonyl proteins in supercooled or hypoxia-exposed hatchlings. Our results suggest that hatchling C. picta have a well-developed antioxidant defense system that minimizes oxidative damage during hibernation.  相似文献   
966.
967.

Background  

Strawberry (Fragaria spp.) is the familiar name of a group of economically important crop plants and wild relatives that also represent an emerging system for the study of gene and genome evolution. Its small stature, rapid seed-to-seed cycle, transformability and miniscule basic genome make strawberry an attractive system to study processes related to plant physiology, development and crop production; yet it lacks substantial genomics-level resources. This report addresses this deficiency by characterizing 0.71 Mbp of gene space from a diploid species (F. vesca). The twenty large genomic tracks (30-52 kb) captured as fosmid inserts comprise gene regions with roles in flowering, disease resistance, and metabolism.  相似文献   
968.
Heat shock protein A12B (HSPA12B) is the newest member of a recently defined subfamily of proteins distantly related to the 70-kDa family of heat shock proteins (HSP70) family. HSP70s play a crucial role in protecting cells, tissues, organs and animals from various noxious conditions. Here we studied the dynamic expression changes and localization of HSPA12B after middle cerebral artery occlusion (MCAO) with reperfusion induced ischemic insult processes in adult rats. Apoptosis, as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, was also increased in the peri-ischemic cortex compared to non-ischemic hemisphere. The expression of HSPA12B was strongly induced in the ischemic hemisphere of MCAO reperfusion rats in vivo. In vitro studies indicated that the up-regulation of HSPA12B may be involved in oxygen-glucose deprivation-induced PC12 cell death. And knockdown of HSPA12B in cultured differentiated PC12 cells by siRNA showed that HSPA12B inhibited the expression of active caspase-3. Collectively, these results suggested that HSPA12B may be required for protecting neurons from ischemic insults.  相似文献   
969.
There are two purposes in displaying spatial genetic structure. One is that a visual representation of the variation of the genetic variable should be provided in the contour map. The other is that spatial genetic structure should be reflected by the patterns or the gradients with genetic boundaries in the map. Nevertheless, most conventional interpolation methods, such as Cavalli-Sforza's method in genography, inverse distance-weighted methods, and the Kriging technique, focus only on the first primary purpose because of their arbitrary thresholds marked on the maps. In this paper we present an application of the contour area multifractal model (CAMM) to human population genetics. The method enables the analysis of the geographic distribution of a genetic marker and provides an insight into the spatial and geometric properties of obtained patterns. Furthermore, the CAMM may overcome some of the limitations of other interpolation techniques because no arbitrary thresholds are necessary in the computation of genetic boundaries. The CAMM is built by establishing power law relationships between the area A (> or =rho) in the contour map and the value p itself after plotting these values on a log-log graph. A series of straight-line segments can be fitted to the points on the log-log graph, each representing a power law relationship between the area A (> or =rho) and the cutoff genetic variable value for rho in a particular range. These straight-line segments can yield a group of cutoff values, which can be identified as the genetic boundaries that can classify the map of genetic variable into discrete genetic zones. These genetic zones usually correspond to spatial genetic structure on the landscape. To provide a better understanding of the interest in the CAMM approach, we analyze the spatial genetic structures of three loci (ABO, HLA-A, and TPOX) in China using the CAMM. Each synthetic principal component (SPC) contour map of the three loci is created by using both Han and minority groups data together. These contour maps all present an obvious geographic diversity, which gradually increases from north to south, and show that the genetic differences among populations in different districts of the same nationality are greater than those among different nationalities of the same district. It is surprising to find that both the value of p and the fractal dimension alpha have a clear north to south gradient for each locus, and the same clear boundary between southern and northern Asians in each contour map is still seen in the zone of the Yangtze River, although substantial population migrations have occurred because of war or famine in the last 2,000 or 3,000 years. A clear genetic boundary between Europeans and Asians in each contour map is still seen in northwestern China with a small value of alpha, although the genetic gradient caused by gene flow between Europeans and Asians has tended to show expansion from northwestern China. From the three contour maps another interesting result can be found: The values of alpha north of the Yangtze River are generally less than those south of the Yangtze River. This indicates that the genetic differences among the populations north of the Yangtze River are generally smaller than those in populations south of the Yangtze River.  相似文献   
970.
We have used a systemic approach to establish a relationship between enzyme measures of glial glutamate and energy metabolism (glutamine synthetase and glutamine synthetase-like protein, glutamate dehydrogenase isoenzymes, brain isoform creatine phosphokinase) and two major glial proteins (glial fibrillary acidic protein and myelin basic protein) in autopsied brain samples taken from patients with schizophrenia (SCH) and mentally healthy subjects (23 and 22 cases, respectively). These biochemical parameters were measured in tissue extracts in three brain areas (prefrontal cortex, caudate nucleus, and cerebellum). Significant differences in the level of at least one of the glutamate metabolizing enzymes were observed between two studied groups in all studied brain areas. Different patterns of correlative links between the biochemical parameters were found in healthy and schizophrenic brains. These findings give a new perspective to our understanding of the impaired regulation of enzyme levels in the brain in SCH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号