全文获取类型
收费全文 | 87763篇 |
免费 | 6610篇 |
国内免费 | 6215篇 |
专业分类
100588篇 |
出版年
2024年 | 206篇 |
2023年 | 1209篇 |
2022年 | 2778篇 |
2021年 | 4611篇 |
2020年 | 3031篇 |
2019年 | 3758篇 |
2018年 | 3633篇 |
2017年 | 2669篇 |
2016年 | 3747篇 |
2015年 | 5508篇 |
2014年 | 6392篇 |
2013年 | 6872篇 |
2012年 | 8014篇 |
2011年 | 7024篇 |
2010年 | 4269篇 |
2009年 | 3828篇 |
2008年 | 4331篇 |
2007年 | 3898篇 |
2006年 | 3434篇 |
2005年 | 2780篇 |
2004年 | 2408篇 |
2003年 | 2038篇 |
2002年 | 1772篇 |
2001年 | 1546篇 |
2000年 | 1475篇 |
1999年 | 1338篇 |
1998年 | 837篇 |
1997年 | 785篇 |
1996年 | 812篇 |
1995年 | 744篇 |
1994年 | 642篇 |
1993年 | 450篇 |
1992年 | 648篇 |
1991年 | 504篇 |
1990年 | 457篇 |
1989年 | 320篇 |
1988年 | 287篇 |
1987年 | 266篇 |
1986年 | 188篇 |
1985年 | 222篇 |
1984年 | 142篇 |
1983年 | 126篇 |
1982年 | 82篇 |
1981年 | 65篇 |
1980年 | 37篇 |
1979年 | 61篇 |
1977年 | 30篇 |
1974年 | 38篇 |
1973年 | 34篇 |
1972年 | 30篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
72.
73.
74.
75.
α-1抗胰蛋白酶Z型突变体蛋白(α-1 antitrypsin Z-mutant protein, ATZ)是引发α-1抗胰蛋白酶缺陷症(α-1 antitrypsin deficiency, AATD)的主要原因,研究ATZ蛋白的泛素化修饰和降解对于治疗AATD具有重要意义。STUB1是一种重要的E3泛素连接酶,参与调节多种蛋白质的泛素化修饰。然而,STUB1是否参与ATZ的泛素化修饰尚未明确。本研究首先将ATZ和STUB1的编码基因克隆到pET28a质粒,构建了这2个蛋白的表达质粒。随后,将重组质粒转入大肠杆菌表达系统,在优化诱导条件实现了重组蛋白的异源表达。通过金属螯合亲和层析技术纯化得到目的蛋白,并通过蛋白质谱分析验证了其氨基酸序列的准确性。利用纯化的ATZ和STUB1重组蛋白,构建了一个体外泛素化修饰反应体系。实验结果显示,在ATP、E1泛素激活酶和E2泛素结合酶的协同作用下,STUB1成功催化了ATZ的泛素化修饰。本研究提供了一种体外获得Z型突变体ATZ纯化蛋白的方法,并确认了STUB1介导ATZ的泛素化修饰功能,推进了对α-1抗胰蛋白酶Z型突变体蛋白在细胞内降解过程的调控机制的理解。 相似文献
76.
Han Mo Linghan Wang Yuting Chen Xuchen Zhang Ning Huang Tingting Liu Wantong Hu Yi Zhong Qian Li 《Aging cell》2022,21(6)
Age‐related memory impairment (AMI) is a common phenomenon across species. Vulnerability to interfering stimuli has been proposed to be an important cause of AMI. However, the molecular mechanisms underlying this vulnerability‐related AMI remain unknown. Here we show that learning‐activated MAPK signals are gradually lost with age, leading to vulnerability‐related AMI in Drosophila. Young flies (2‐ or 3‐day‐old) exhibited a significant increase in phosphorylated MAPK levels within 15 min after learning, whereas aged flies (25‐day‐old) did not. Compared to 3‐day‐old flies, significant 1 h memory impairments were observed in 15‐, 20‐, and 30‐day‐old flies, but not in 10‐day‐old flies. However, with post‐learning interfering stimuli such as cooling or electric stimuli, 10‐day‐old flies had worse memory performance at 1 h than 3‐day‐old flies, showing a premature AMI phenomenon. Increasing learning‐activated MAPK signals through acute transgene expression in mushroom body (MB) neurons restored physiological trace of 1 h memory in a pair of MB output neurons in aged flies. Decreasing such signals in young flies mimicked the impairment of 1 h memory trace in aged flies. Restoring learning‐activated MAPK signals in MB neurons in aged flies significantly suppressed AMI even with interfering stimuli. Thus, our data suggest that age‐related loss of learning‐activated neuronal MAPK signals causes memory vulnerability to interfering stimuli, thereby leading to AMI. 相似文献
77.
本文系统分析了影响宁夏引黄灌区春小麦生产的生态条件,从作物品种、黄河肥水、土壤肥力与盐渍化、气候等方面分析了小麦与生态环境的关系,提出小麦与生态环境的平衡失调是限制灌区小麦生产潜力的关键问题,对最隹施用化肥量、合理灌溉定额及改善小麦生态环境、实现高产稳产等进行了探讨。 相似文献
78.
Tingting Zheng Lulu Liu Jiayi Liu Zhengxiang Zhang 《Journal of musculoskeletal & neuronal interactions》2022,22(2):296
There are few reports of rhabdomyolysis caused by anticoagulants, and it is extremely rare for it to be caused by dabigatran etexilate. An 86-year-old female experienced sudden muscle weakness and pain, a significant increase in Creatine kinase, and renal impairment after oral administration of dabigatran etexilate for 3 weeks. The enhanced thigh MRI showed abnormal signal in multiple thigh muscle groups, indicating that the lesions should be considered inflammatory diseases. In conclusion, the possibility of rhabdomyolysis should be ruled out when muscle weakness and myalgia occur at the beginning of dabigatran etexilate treatment. 相似文献
79.
Wenli Hui Zhipeng Yang Ke Fang Mengdi Wu Wenhua Mu Cong Zhao Dan Xue Tengteng Zhu Xiao Li Ming Gao Yunhua Lu Kunping Yan 《Current issues in molecular biology》2022,44(6):2683
Excessive reactive oxygen species (ROS), a highly reactive substance that contains oxygen, induced by ultraviolet A (UVA) cause oxidative damage to skin. We confirmed that hemin can catalyze the reaction of tyrosine (Tyr) and hydrogen peroxide (H2O2). Catalysis was found to effectively reduce or eliminate oxidative damage to cells induced by H2O2 or UVA. The scavenging effects of hemin for other free-radical ROS were also evaluated through pyrogallol autoxidation, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·)-scavenging assays, and phenanthroline–Fe2+ assays. The results show that a mixture of hemin and tyrosine exhibits strong scavenging activities for H2O2, superoxide anion (O2−·), DPPH·, and the hydroxyl radical (·OH). Furthermore, the inhibition of oxidative damage to human skin keratinocyte (HaCaT) cells induced by H2O2 or UVA was evaluated. The results show that catalysis can significantly reduce the ratio of cell apoptosis and death and inhibit the release of lactate dehydrogenase (LDH), as well as accumulation of malondialdehyde (MDA). Furthermore, the resistance to apoptosis was found to be enhanced. These results show that the mixture of hemin and tyrosine has a significantly protective effect against oxidative damage to HaCaT cells caused by UVA, suggesting it as a protective agent for combating UVA damage. 相似文献
80.
Mahabub Alam Hiroki Shima Yoshitaka Matsuo Nguyen Chi Long Mitsuyo Matsumoto Yusho Ishii Nichika Sato Takato Sugiyama Risa Nobuta Satoshi Hashimoto Liang Liu Mika K. Kaneko Yukinari Kato Toshifumi Inada Kazuhiko Igarashi 《The Journal of biological chemistry》2022,298(7)
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient. 相似文献