RNA silencing is a potent antiviral mechanism in plants and animals. As a counter-defense, many viruses studied to date encode one or more viral suppressors of RNA silencing (VSR). In the latter case, how different VSRs encoded by a virus function in silencing remains to be fully understood. We previously showed that the nonstructural protein Pns10 of a Phytoreovirus, Rice dwarf virus (RDV), functions as a VSR. Here we present evidence that another nonstructural protein, Pns11, also functions as a VSR. While Pns10 was localized in the cytoplasm, Pns11 was localized both in the nucleus and chloroplasts. Pns11 has two bipartite nuclear localization signals (NLSs), which were required for nuclear as well as chloroplastic localization. The NLSs were also required for the silencing activities of Pns11. This is the first report that multiple VSRs encoded by a virus are localized in different subcellular compartments, and that a viral protein can be targeted to both the nucleus and chloroplast. These findings may have broad significance in studying the subcellular targeting of VSRs and other viral proteins in viral-host interactions.
Small nucleolar RNA SNORD50A and SNORD50B (SNORD50A/B) has been reported to be recurrently deleted and function as a putative tumor suppressor in different types of cancer by binding to and suppressing the activity of the KRAS oncoproteins. Its deletion correlates with poorer patient survival. However, in this study, we surprisingly found that SNORD50A/B loss predicted a better survival in breast cancer patients carrying wild-type p53. Functional studies showed that SNORD50A/B deletion strongly inhibited the proliferation, migration, invasion and tumorigenic potential, and induced cell cycle arrest and apoptosis in p53 wild-type breast cancer cells, while exerted the opposite effects in p53 mutated breast cancer cells. This was also supported by ectopically expressing SNORD50A/B in both p53 wild-type and mutated breast cancer cells. Mechanistically, SNORD50A/B clearly enhances the interaction between E3 ubiquitin ligase TRIM21 and its substrate GMPS by forming a complex among them, thereby promoting GMPS ubiquitination and its subsequent cytoplasmic sequestration. SNORD50A/B deletion in p53 wild-type breast cancer cells will release GMPS and induce the translocation of GMPS into the nucleus, where GMPS can recruit USP7 and form a complex with p53, thereby decreasing p53 ubiquitination, stabilizing p53 proteins, and inhibiting malignant phenotypes of cancer cells. Altogether, the present study first reports that SNORD50A/B plays an oncogenic role in p53 wild-type breast cancers by mediating TRIM21-GMPS interaction.Subject terms: Cancer genetics, Tumour biomarkers相似文献
Testosterone deficiency resulted in increased mortality in men. Our previous work found that hydrogen sulphide (H2S) significantly alleviated the spermatogenesis disorder. To investigate whether H2S could regulate testosterone synthesis and the relative signalling pathways. Disorder model of testosterone synthesis was constructed in vitro and in vivo. The cell viability was detected using CCK-8 method. The concentration of H2S and testosterone were examined using ELISA kits. The relative mRNA and protein expression of CBS, PDE4A, PDE8A and proteins related to testosterone synthesis were detected by RT-qPCR and western blotting. PAS staining was used to detect the inflammatory status of testis. The sulfhydryl level of PDE4A and PDE8A was determined by Biotin Switch Technique. CBS overexpression inhibited while knockdown promoted LPS + H2O2 induced injury in testosterone synthesis of MLTC-1 cells, though regulating the level of H2S. The LPS + H2O2 induced inhibition on cAMP and p-PKA was recovered by CBS overexpression, while addition of the specific inhibitor of PKA had opposite effects. CBS overexpression alleviated the inflammation status in testis and promoted the expression of StAR, P450scc, P450c17 and 3β-HSD. CBS could also exhibit its protective role through promoting sulfhydrylation of PDE4A and PDE8A. H2S catalysed by CBS could recover testosterone synthesis in vitro and in vivo through inhibiting PDE expression via sulfhydryl modification and activating cAMP/PKA pathway. 相似文献
DNA methylation is an important epigenetic mark. In plants, de novo DNA methylation occurs mainly through the RNA-directed DNA methylation (RdDM) pathway. Researchers have previously inferred that a flowering regulator, MULTICOPY SUPPRESSOR OF IRA1 4 (MSI4)/FVE, is involved in non-CG methylation at several RdDM targets, suggesting a role of FVE in RdDM. However, whether and how FVE affects RdDM genome-wide is not known. Here, we report that FVE is required for DNA methylation at thousands of RdDM target regions. In addition, dysfunction of FVE significantly reduces 24-nucleotide siRNA accumulation that is dependent on factors downstream in the RdDM pathway. By using chromatin immunoprecipitation and sequencing (ChIP-seq), we show that FVE directly binds to FVE-dependent 24-nucleotide siRNA cluster regions. Our results also indicate that FVE may function in RdDM by physically interacting with RDM15, a downstream factor in the RdDM pathway. Our study has therefore revealed that FVE, by associating with RDM15, directly regulates DNA methylation and siRNA accumulation at a subset of RdDM targets. 相似文献
Protein engineering through directed evolution is an effective way to obtain proteins with novel functions with the potential applications as tools for diagnosis or therapeutics. Many natural proteins have undergone directed evolution in vitro in the test tubes in the laboratories worldwide, resulting in the numerous protein variants with novel or enhanced functions. we constructed here an SH2 variant library by randomizing 8 variable residues in its phosphotyrosine (pTyr) binding pocket. Selection of this library by a pTyr peptide led to the identification of SH2 variants with enhanced affinities measured by EC50. Fluorescent polarization was then applied to quantify the binding affinities of the newly identified SH2 variants. As a result, three SH2 variants, named V3, V13 and V24, have comparable binding affinities with the previously identified SH2 triple‐mutant superbinder. Biolayer Interferometry assay was employed to disclose the kinetics of the binding of these SH2 superbinders to the phosphotyrosine peptide. The results indicated that all the SH2 superbinders have two‐orders increase of the dissociation rate when binding the pTyr peptide while there was no significant change in their associate rates. Intriguingly, though binding the pTyr peptide with comparable affinity with other SH2 superbinders, the V3 does not bind to the sTyr peptide. However, variant V13 and V24 have cross‐reactivity with both pTyr and sTyr peptides. The newly identified superbinders could be utilized as tools for the identification of pTyr‐containing proteins from tissues under different physiological or pathophysiological conditions and may have the potential in the therapeutics. 相似文献
Posttranslational modifications, such as SUMOylation, play specific roles in the life cycle of invading pathogens. However, the effect of SUMOylation on the adaptation, pathogenesis, and transmission of influenza A virus (IAV) remains largely unknown. Here, we found that a conserved lysine residue at position 612 (K612) of the polymerase basic protein 1 (PB1) of IAV is a bona fide SUMOylation site. SUMOylation of PB1 at K612 had no effect on the stability or cellular localization of PB1, but was critical for viral ribonucleoprotein (vRNP) complex activity and virus replication in vitro. When tested in vivo, we found that the virulence of SUMOylation-defective PB1/K612R mutant IAVs was highly attenuated in mice. Moreover, the airborne transmission of a 2009 pandemic H1N1 PB1/K612R mutant virus was impaired in ferrets, resulting in reversion to wild-type PB1 K612. Mechanistically, SUMOylation at K612 was essential for PB1 to act as the enzymatic core of the viral polymerase by preserving its ability to bind viral RNA. Our study reveals an essential role for PB1 K612 SUMOylation in the pathogenesis and transmission of IAVs, which can be targeted for the design of anti-influenza therapies. 相似文献
Protein S-acylation is an important post-translational modification in eukaryotes, regulating the subcellular localization, trafficking, stability, and activity of substrate proteins. The dynamic regulation of this reversible modification is mediated inversely by protein S-acyltransferases and de-S-acylation enzymes, but the de-S-acylation mechanism remains unclear in plant cells. Here, we characterized a group of putative protein de-S-acylation enzymes in Arabidopsis thaliana, including 11 members of Alpha/Beta Hydrolase Domain-containing Protein 17-like acyl protein thioesterases (ABAPTs). A robust system was then established for the screening of de-S-acylation enzymes of protein substrates in plant cells, based on the effects of substrate localization and confirmed via the protein S-acylation levels. Using this system, the ABAPTs, which specifically reduced the S-acylation levels and disrupted the plasma membrane localization of five immunity-related proteins, were identified respectively in Arabidopsis. Further results indicated that the de-S-acylation of RPM1-Interacting Protein 4, which was mediated by ABAPT8, resulted in an increase of cell death in Arabidopsis and Nicotiana benthamiana, supporting the physiological role of the ABAPTs in plants. Collectively, our current work provides a powerful and reliable system to identify the pairs of plant protein substrates and de-S-acylation enzymes for further studies on the dynamic regulation of plant protein S-acylation.A robust screening system for ABHD17-like hydrolases was established to identify de-S-acylation enzymes of protein substrates in plant cells. 相似文献
Endophytic fungi play important roles for host's stress tolerance including invasion by pathogenic microbes. Small molecules are common weapons in the microbe–microbe interactions. Panax notoginseng is a widely used traditional Chinese medicinal plant and harbors many endophytes, some exert functions against pathogens. Here, we report six new compounds named myrothins A–F ( 1 – 6 ) produced by Myrothecium sp. BS-31, an endophyte isolated from P. notoginseng, and their antifungal activities against pathogenic fungi causing host root-rot disease. Their structures were elucidated with analysis of spectroscopic data including 1D and 2D NMR, HR-ESI-MS. Myrothins B ( 2 ) and E ( 5 ) showed the weak activity against Fusarium oxysporum and Phoma herbarum, and myrothins F ( 6 ) showed weak activity against F. oxysporum. 相似文献