全文获取类型
收费全文 | 76156篇 |
免费 | 5534篇 |
国内免费 | 4862篇 |
专业分类
86552篇 |
出版年
2024年 | 154篇 |
2023年 | 1033篇 |
2022年 | 2391篇 |
2021年 | 4071篇 |
2020年 | 2617篇 |
2019年 | 3231篇 |
2018年 | 3166篇 |
2017年 | 2297篇 |
2016年 | 3256篇 |
2015年 | 4808篇 |
2014年 | 5543篇 |
2013年 | 5983篇 |
2012年 | 7021篇 |
2011年 | 6155篇 |
2010年 | 3710篇 |
2009年 | 3333篇 |
2008年 | 3722篇 |
2007年 | 3354篇 |
2006年 | 2907篇 |
2005年 | 2380篇 |
2004年 | 1957篇 |
2003年 | 1653篇 |
2002年 | 1399篇 |
2001年 | 1230篇 |
2000年 | 1218篇 |
1999年 | 1121篇 |
1998年 | 661篇 |
1997年 | 655篇 |
1996年 | 666篇 |
1995年 | 616篇 |
1994年 | 543篇 |
1993年 | 376篇 |
1992年 | 568篇 |
1991年 | 435篇 |
1990年 | 406篇 |
1989年 | 282篇 |
1988年 | 244篇 |
1987年 | 234篇 |
1986年 | 166篇 |
1985年 | 193篇 |
1984年 | 109篇 |
1983年 | 117篇 |
1982年 | 71篇 |
1981年 | 58篇 |
1980年 | 37篇 |
1979年 | 61篇 |
1977年 | 30篇 |
1974年 | 38篇 |
1973年 | 34篇 |
1972年 | 30篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
51.
Crystals of phosphoglucomutase, grown in 2.1 M ammonium sulfate, "desalted", and suspended in a 30% polyoxyethylene-8000/1 M glycine solution as described in the accompanying paper [Ray, W. J., Jr., Puvathingal, J. M., Bolin, J. T., Minor, W., Liu, Y., & Muchmore, S. W. (1991) Biochemistry 30 (preceding paper in this issue)], were treated with glucose phosphates to form an equilibrium mixture of the catalytically active substrate/product complexes. However, this treatment extensively fractured the crystals, even when very dilute solutions of glucose phosphates were used. But formation of the desired complexes was achieved, without fracturing, by introducing the glucose phosphates at high salt concentration, where they do not bind significantly to the enzyme, and maintaining their presence during subsequent sulfate-removal steps, in order to obtain essentially uniform binding throughout the crystal at all times. Although this procedure produced unfractured crystals of the catalytically active complexes, an adjustment in water activity was required to prevent the crystals from slowly liquefying in the presence of the added glucose phosphates. After this adjustment, the quality of diffraction-grade crystals subjected to this treatment was not significantly altered. An even larger adjustment in water activity was required to stabilize crystals that had been largely converted into a mixture of vanadate-based transition-state analogue complexes [cf. Ray, W. J., Jr., & Puvathingal, J. M. (1990) Biochemistry 29, 2790-2801] by means of an analogous procedure. The rationale for, and the implications of, this adjustment of water activity are discussed. The phenomenon of lattice-based binding cooperativity also is discussed together with a possible role for such cooperativity in the fracturing of protein crystals during formation of ligand complexes and possible ways to circumvent such fracturing based on the annealing of crystals at fractional saturation. An assay for quantifying the extent of formation of the vanadate-based transition-state analogue complexes in crystals of phosphoglucomutase is described. A solution to problems associated with producing and maintaining a steady-state in treated crystals is discussed within the context of maximizing the fraction of the crystalline enzyme present as a complex with one such inhibitor, glucose alpha-1-phosphate-6-vanadate. One of these problems, achieving a substantial reduction in sulfate concentration, could not be successfully addressed by employing the desalting procedure used to produce the substrate/product complexes, because of reduced diffusional rates in the final solution.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
52.
W R Mann V S Venkatraj R G Allen Q Liu D A Olsen B Adler-Brecher J I Mao B Weiffenbach S L Sherman A D Auerbach 《Genomics》1991,9(2):329-337
Fanconi anemia is a rare autosomal recessive disorder in which affected individuals are predisposed to acute myelogenous leukemia and other malignancies. We report the results of a genetic linkage study involving 34 families enrolled in the International Fanconi Anemia Registry. A significant lod score was obtained between D20S20, an anonymous DNA segment from chromosome 20q, and Fanconi anemia (Zmax 3.04, theta max = 0.12). However, six other anonymous DNA segments from chromosome 20q, including D20S19, which is highly polymorphic and tightly linked to D20S20, showed no or only weak evidence for linkage to Fanconi anemia. An admixture test revealed significant evidence for linkage heterogeneity (chi 2 = 6.10, P = 0.01) at the D20S19 locus. Lod scores suggestive of linkage between Fanconi anemia and this locus were obtained with two of the largest kindreds studied (lods = 2.6 and 2.1, at theta = 0.001). Thus, our data support the provisional assignment of a Fanconi anemia gene to chromosome 20q. 相似文献
53.
Role of cyclic AMP-dependent protein kinase in the induction of tyrosine aminotransferase 总被引:2,自引:0,他引:2
A Y Liu 《The Journal of biological chemistry》1980,255(10):4421-4429
54.
55.
56.
57.
W Samuel Fagg Naiyou Liu Ulrich Braunschweig Karen
Larissa Pereira
de
Castro Xiaoting Chen Frederick
S Ditmars Steven
G Widen John Paul Donohue Katalin Modis William
K Russell Jeffrey H Fair Matthew
T Weirauch Benjamin
J Blencowe Mariano
A Garcia-Blanco 《Nucleic acids research》2022,50(9):5313
Alternative splicing is critical for development; however, its role in the specification of the three embryonic germ layers is poorly understood. By performing RNA-Seq on human embryonic stem cells (hESCs) and derived definitive endoderm, cardiac mesoderm, and ectoderm cell lineages, we detect distinct alternative splicing programs associated with each lineage. The most prominent splicing program differences are observed between definitive endoderm and cardiac mesoderm. Integrative multi-omics analyses link each program with lineage-enriched RNA binding protein regulators, and further suggest a widespread role for Quaking (QKI) in the specification of cardiac mesoderm. Remarkably, knockout of QKI disrupts the cardiac mesoderm-associated alternative splicing program and formation of myocytes. These changes arise in part through reduced expression of BIN1 splice variants linked to cardiac development. Mechanistically, we find that QKI represses inclusion of exon 7 in BIN1 pre-mRNA via an exonic ACUAA motif, and this is concomitant with intron removal and cleavage from chromatin. Collectively, our results uncover alternative splicing programs associated with the three germ lineages and demonstrate an important role for QKI in the formation of cardiac mesoderm. 相似文献
58.
Weixiao Lei Zefu Wang Man Cao Hui Zhu Min Wang Yi Zou Yunchun Han Dandan Wang Zeyu Zheng Ying Li Bingbing Liu Dafu Ru 《DNA research》2022,29(3)
Sophora japonica is a medium-size deciduous tree belonging to Leguminosae family and famous for its high ecological, economic and medicinal value. Here, we reveal a draft genome of S. japonica, which was ∼511.49 Mb long (contig N50 size of 17.34 Mb) based on Illumina, Nanopore and Hi-C data. We reliably assembled 110 contigs into 14 chromosomes, representing 91.62% of the total genome, with an improved N50 size of 31.32 Mb based on Hi-C data. Further investigation identified 271.76 Mb (53.13%) of repetitive sequences and 31,000 protein-coding genes, of which 30,721 (99.1%) were functionally annotated. Phylogenetic analysis indicates that S. japonica separated from Arabidopsis thaliana and Glycine max ∼107.53 and 61.24 million years ago, respectively. We detected evidence of species-specific and common-legume whole-genome duplication events in S. japonica. We further found that multiple TF families (e.g. BBX and PAL) have expanded in S. japonica, which might have led to its enhanced tolerance to abiotic stress. In addition, S. japonica harbours more genes involved in the lignin and cellulose biosynthesis pathways than the other two species. Finally, population genomic analyses revealed no obvious differentiation among geographical groups and the effective population size continuously declined since 2 Ma. Our genomic data provide a powerful comparative framework to study the adaptation, evolution and active ingredients biosynthesis in S. japonica. More importantly, our high-quality S. japonica genome is important for elucidating the biosynthesis of its main bioactive components, and improving its production and/or processing. 相似文献
59.