首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   599篇
  免费   63篇
  国内免费   23篇
  2024年   1篇
  2023年   11篇
  2022年   13篇
  2021年   21篇
  2020年   17篇
  2019年   30篇
  2018年   37篇
  2017年   28篇
  2016年   35篇
  2015年   35篇
  2014年   44篇
  2013年   42篇
  2012年   60篇
  2011年   41篇
  2010年   29篇
  2009年   25篇
  2008年   30篇
  2007年   26篇
  2006年   27篇
  2005年   21篇
  2004年   28篇
  2003年   20篇
  2002年   7篇
  2001年   13篇
  2000年   10篇
  1999年   10篇
  1998年   7篇
  1997年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有685条查询结果,搜索用时 31 毫秒
591.
We have elucidated the cytoprotective effect of annphenone (2,4-dihyroxy-6-methoxy-acetophenone 4-O-beta-d-glucopyranoside) against oxidative stress-induced apoptosis. Annphenone scavenged intracellular reactive oxygen species (ROS) and increased antioxidant enzyme activities. It thereby prevented lipid peroxidation and DNA damage, which was demonstrated by the inhibition of the formation of thiobarbituric acid reactive substance (TBARS), inhibition of the comet tail and decreased phospho-H2A.X expression. Annphenone protected Chinese hamster lung fibroblast (V79-4) cells from cell death via the inhibition of apoptosis induced by hydrogen peroxide (H(2)O(2)), as shown by decreased apoptotic nuclear fragmentation, decreased sub-G(1) cell population and inhibited mitochondrial membrane potential (Deltapsi) loss. Taken together, these findings suggest that annphenone exhibits antioxidant properties by inhibiting ROS generation and thus protecting cells from H(2)O(2)-induced cell damage.  相似文献   
592.
共聚焦镜观察凋亡巨噬细胞内pH的变化   总被引:3,自引:0,他引:3  
用透射电镜观察巨噬细胞的形态学改变,结果显示,地塞米松处理8小时后,大部分巨噬细胞发生凋亡特征变化:胞突缩短、减少,胞膜完整。胞体皱缩,胞质密度增加,其中出现大量空泡。胞核染色质边聚、浓缩。另外用激光扫描共聚焦显微镜(ACAS570)和pH荧光探针SNARF┐1/AM实时检测地塞米松处理巨噬细胞胞浆pH的动态变化。加入地塞米松,多数巨噬细胞胞浆马上发生快速和短期的碱化。随后,胞浆pH缓慢降低,胞浆酸化。结果表明,胞浆酸化是细胞凋亡发展的必然过程,胞浆碱化则很可能与细胞凋亡的发生相关,也可能与细胞种类、细胞功能状态相关  相似文献   
593.
Two 17β-hydroxysteroid dehydrogenases (17HSDs), type 1 and type 7, are enzymes of estradiol biosynthesis, in addition to which rodent type 1 enzymes are also able to catalyze androgens. Both of the 17HSDs are abundantly expressed in ovaries, the type 1 enzyme in granulosa cells and type 7 in luteinized cells. The expression of 17HSD7, which has also been described as a prolactin receptor-associated protein (PRAP), is particularly up-regulated in corpus luteum during the second half of rodent pregnancy. A moderate or slight signal for mouse 17HSD7/PRAP mRNA has also been demonstrated in samples of placenta and mammary gland, for example. Human, but not rodent, 17HSD1 is expressed in placenta, breast epithelium and endometrium in addition to ovaries. A cell-specific enhancer, silencer and promoter in the hHSD17B1 gene participate in the regulation of type 1 enzyme expression. The enhancer consists of several subunits, including a retinoic acid response element, the silencer has a binding motif for GATA factors, and the proximal promoter contains adjacent and competing AP-2 and Sp binding sites.  相似文献   
594.
Irradiation treatment enhanced resistance of C57BL/6, but not BALB/c against Toxoplasma gondii infection. Six Gy-irradiated (IR) C57BL/6 recipients of B-2 cells from T. gondii-infected C57BL/6 died after infection. B-2 suppressor cells from infected C57BL/6 enhanced production of IL-4 and IL-10 in peritoneal exudate cells (PECs), and down-regulated NO release in peritoneal macrophages after infection. On the other hand, B-2 suppressor cells were not detected in a strain, BALB/c, resistant against infection. These data indicated that irradiation-sensitive B-2 cells regulated susceptibility/resistance in mice against T. gondii infection.  相似文献   
595.
Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate (N,N,O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of the HPKIH analogues is maintained even after complexation with Fe. To understand the potent anti-tumor activity of these compounds, we have fully characterized their chemical properties. This included examination of the solution chemistry and X-ray crystal structures of both the ligands and Fe complexes from this class and the ability of these complexes to mediate redox reactions. Potentiometric titrations demonstrated that all chelators are present predominantly in their charge-neutral form at physiological pH (7.4), allowing access across biological membranes. Keto–enol tautomerism of the ligands was identified, with the tautomers exhibiting distinctly different protonation constants. Interestingly, the chelators form low-spin (diamagnetic) divalent Fe complexes in solution. The chelators form distorted octahedral complexes with FeII, with two tridentate ligands arranged in a meridional fashion. Electrochemistry of the Fe complexes in both aqueous and non-aqueous solutions revealed that the complexes are oxidized to their ferric form at relatively high potentials, but this oxidation is coupled to a rapid reaction with water to form a hydrated (carbinolamine) derivative, leading to irreversible electrochemistry. The Fe complexes of the HPKIH analogues caused marked DNA degradation in the presence of hydrogen peroxide. This observation confirms that Fe complexes from the HPKIH series mediate Fenton chemistry and do not repel DNA. Collectively, studies on the solution chemistry and structure of these HPKIH analogues indicate that they can bind cellular Fe and enhance its redox activity, resulting in oxidative damage to vital biomolecules.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Abbreviations DFO desferrioxamine - HPKIH di-2-pyridyl ketone isonicotinoyl hydrazone - HNIH 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone - HPCIH 2-pyridinecarbaldehyde isonicotinoyl hydrazone - HPIH pyridoxal isonicotinoyl hydrazone - L linear DNA - OC open circular DNA - SC supercoiled DNA  相似文献   
596.
Three series of spirocyclopiperazinium derivatives 5a-d, 6a-f and 17a-d were synthesized and evaluated for their in vivo analgesic activities. Compounds 5a, 17a and 17b exhibited excellent analgesic activity. Two important structure-activity relationships were observed from this study: (1) the quaternary ammonium functionality is a critical pharmacophore for analgesic activity; (2) it is important to adjust the lipophilic property of compounds to improve analgesic activity.  相似文献   
597.
Cyclosporin A (CsA) is a potent immunosuppressive agent, and can cause severe adverse effects including nephrotoxicity partly due to generation of reactive oxygen species (ROS). Glucocorticoids, which are widely used in combination with CsA, have been shown to reduce oxidative injuries in various cells, but its mechanism is not understood well. To investigate the effects of prednisolone (Pd) on CsA-induced cellular damage and ROS generation in Madin-Darby canine kidney (MDCK) tubular epithelial cells, cells were treated with CsA, CsA plus Pd, or CsA plus vitamin E. Pretreatment with Pd protected cells from CsA-induced apoptosis but not from G(0)/G(1) cell cycle arrest even at its maximal protective concentration (30 microM), whereas vitamin E almost completely inhibited both CsA-induced apoptosis and cell cycle arrest at 1 microM concentration. In addition, Pd reduced the amount of CsA-induced ROS and showed partly restored catalase which was down-regulated by 10 microM CsA at both the mRNA and protein levels. Vitamin E completely abolished CsA-induced ROS generation and catalase attenuation at 10 microM concentration. Finally, the effects of 1 microM vitamin E on CsA-induced ROS and apoptosis as well as cell cycle arrest were similar to those of 30 microM Pd. We conclude that, in MDCK cells, Pd protects against CsA-induced cytotoxicity by suppressing ROS generation, although its protective effect is weaker than that of vitamin E.  相似文献   
598.
BACKGROUND: Little is known about the developmental changes associated with tibial ray deficiencies. The aim of this study was to detect cell death, proliferation, and gene expression that result in tibial ray deficiencies. METHODS: We induced tibial ray deficiencies in rat embryos using a teratogenic agent (busulfan) and observed the developmental changes in 1126 hindlimbs. We performed Nile blue staining, whole mount in situ hybridization for fibroblast growth factor 8 (Fgf8), bone morphogenetic protein 4 (Bmp4) and Sonic hedgehog (Shh), terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) and assessment of cell proliferation by 5-bromo-2'-deoxy-uridine (BrdU)/anti-BrdU immunohistochemistry. RESULTS: In situ hybridization showed reductions in Fgf8 and Bmp4 expression. Histological examination showed a delay of mesenchymal condensation, increased mesenchymal cell death, decreased mesenchymal cell proliferation, and a reduction in the number of mesenchymal cells. These abnormalities may cause hypoplasia of the limb. Bmp4 expression was markedly reduced in the anterior mesenchyme. Shh was expressed in the posterior mesenchyme. We suggest that the posterior skeletal elements may be fully formed owing to Shh expression, but the anterior skeletal elements may be underdeveloped owing to an intense reduction of Bmp4 expression in the anterior mesenchyme, causing hypoplasia of the tibial ray. CONCLUSIONS: The combined effects of increased cell death, decreased cell proliferation, reduction of Fgf8 expression, and intense reduction of Bmp4 expression in the anterior mesenchyme may play an important role in the development of tibial ray deficiency induced by busulfan.  相似文献   
599.
K(ATP) channels couple intermediary metabolism to cellular excitability. Such a property relies on the inherent ATP-sensing mechanism known to be located in the Kir6 subunit. However, the molecular basis for the ATP sensitivity remains unclear. Here we showed evidence for protein domains and amino acid residues essential for the channel gating by intracellular ATP. Chimerical channels were constructed using protein domains of Kir6.2 and Kir1.1, expressed in HEK293 cells, and studied in inside-out patches. The N and C termini, although important, were inadequate for channel gating by intracellular ATP. Full ATP sensitivity also required M1 and M2 helices. Cytosolic portions of the M1 and M2 sequences were crucial, in which six amino acid residues were identified, i.e., Thr76, Met77, Ala161, Iso162, Leu164, and Cys166. Site-specific mutation of any of them reduced the ATP sensitivity. Construction of these residues together with the N/C termini produced ATP sensitivity identical to the wild-type channels. The requirement for specific membrane helices suggests that the Kir6.2 gating by ATP is not shared by even two closest relatives in the K(+) channel family, although the general gating mechanisms involving membrane helices appear to be conserved in all K(+) channels.  相似文献   
600.
For the enzymatic production of chitosan oligosaccharides from chitosan, a chitosanase-producing bacterium, Bacillus sp. strain KCTC 0377BP, was isolated from soil. The bacterium constitutively produced chitosanase in a culture medium without chitosan as an inducer. The production of chitosanase was increased from 1.2 U/ml in a minimal chitosan medium to 100 U/ml by optimizing the culture conditions. The chitosanase was purified from a culture supernatant by using CM-Toyopearl column chromatography and a Superose 12HR column for fast-performance liquid chromatography and was characterized according to its enzyme properties. The molecular mass of the enzyme was estimated to be 45 kDa by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme demonstrated bifunctional chitosanase-glucanase activities, although it showed very low glucanase activity, with less than 3% of the chitosanase activity. Activity of the enzyme increased with an increase of the degrees of deacetylation (DDA) of the chitosan substrate. However, the enzyme still retained 72% of its relative activity toward the 39% DDA of chitosan, compared with the activity of the 94% DDA of chitosan. The enzyme produced chitosan oligosaccharides from chitosan, ranging mainly from chitotriose to chitooctaose. By controlling the reaction time and by monitoring the reaction products with gel filtration high-performance liquid chromatography, chitosan oligosaccharides with a desired oligosaccharide content and composition were obtained. In addition, the enzyme was efficiently used for the production of low-molecular-weight chitosan and highly acetylated chitosan oligosaccharides. A gene (csn45) encoding chitosanase was cloned, sequenced, and compared with other functionally related genes. The deduced amino acid sequence of csn45 was dissimilar to those of the classical chitosanase belonging to glycoside hydrolase family 46 but was similar to glucanases classified with glycoside hydrolase family 8.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号