首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3951篇
  免费   274篇
  国内免费   266篇
  2024年   9篇
  2023年   56篇
  2022年   117篇
  2021年   216篇
  2020年   166篇
  2019年   160篇
  2018年   170篇
  2017年   137篇
  2016年   188篇
  2015年   253篇
  2014年   314篇
  2013年   335篇
  2012年   345篇
  2011年   303篇
  2010年   213篇
  2009年   187篇
  2008年   207篇
  2007年   164篇
  2006年   145篇
  2005年   136篇
  2004年   96篇
  2003年   81篇
  2002年   71篇
  2001年   55篇
  2000年   55篇
  1999年   59篇
  1998年   40篇
  1997年   22篇
  1996年   31篇
  1995年   26篇
  1994年   19篇
  1993年   16篇
  1992年   16篇
  1991年   13篇
  1990年   14篇
  1989年   11篇
  1988年   9篇
  1987年   10篇
  1986年   9篇
  1985年   8篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1979年   4篇
排序方式: 共有4491条查询结果,搜索用时 187 毫秒
201.
Gobiobotia filifer is a small benthic fish distributed in Yangtze River Basin. The abundance of G. filifer increased after impoundment of Xiluodu Dam and Xiangjiaba Dam. The state of population structure and changes of genetic diversity before and after impoundment of Xiluodu Dam and Xiangjiaba Dam were interesting issues. However, efficient molecular markers were rare, which will limit us to solve above problems. Twenty‐eight expressed sequence tag SSRs (EST‐SSRs) were successfully identified and verified as stable amplification and polymorphic loci by polyacrylamide gel electrophoresis (PAGE) and capillary electrophoresis. The number of alleles at these EST‐SSR loci ranged from 3 to 14, the polymorphism information content values were 0.125–0.897, and the observed and expected heterozygosities were 0.0–0.857 and 0.132–0.928, respectively. Cross‐species amplification of the 28 loci developed in this study was examined in seven individuals of each of the 7 taxa. The amplification efficiency of 28 EST‐SSRs primer pairs is related to the distance of genetic relationship between cross‐species with G. filifer, and same subfamily species (Xenophysogobio boulengeri and Xenophysogobio nudicorpa) showed the highest (50%) amplification efficiency. These EST‐SSR markers could be used to analyse genetic diversity and population structure of G. filifer and related species.  相似文献   
202.
203.
Viral noncoding RNAs (Epstein–Barr virus-encoded RNAs, EBERs) are believed to play a critical role in the progression of lymphoma and nasopharyngeal carcinoma (NPC). However, the accurate mechanisms accounting for their oncogenic function have not been elucidated, especially in terms of interaction between tumor cells and mesenchymal cells. Here, we report that, in addition to NPC cells, EBERs are also found in endothelial cells in Epstein–Barr virus (EBV)-infected NPC parenchymal tissues, which implicates NPC-derived extracellular vesicles (EVs) in transmitting EBERs to endothelial cells. In support of this hypothesis, we first ascertained if EBERs could be transferred to endothelial cells via EVs isolated from NPC culture supernatant. Then, we clarified that EVs-derived EBERs could promote angiogenesis through stimulation of VCAM-1 expression. Finally, we explored the involvement of EBER recognition by TLR3 and RIG-I in NPC angiogenesis. Our observations collectively illustrate the significance and mechanism of EVs-derived EBERs in angiogenesis and underlie the interaction mechanisms between EBV-infected NPC cells and the tumor microenvironment.  相似文献   
204.
Protein kinase monopolar spindle 1 plays an important role in spindle assembly checkpoint at the onset of mitosis. Over expression of MPS1 correlated with a wide range of human tumors makes it an attractive target for finding an effective and specific inhibitor. In this work, we performed molecular dynamics simulations of protein MPS1 itself as well as protein bound systems with the inhibitor and natural substrate based on crystal structures. The reported orally bioavailable 1 h-pyrrolo [3,2-c] pyridine inhibitors of MPS1 maintained stable binding in the catalytic site, while natural substrate ATP could not stay. Comparative study of stability and flexibility of three systems reveals position shifting of β-sheet region within the catalytic site, which indicates inhibition mechanism was through stabilizing the β-sheet region. Binding free energies calculated with MM-GB/PBSA method shows different binding affinity for inhibitor and ATP. Finally, interactions between protein and inhibitor during molecular dynamic simulations were measured and counted. Residue Gly605 and Leu654 were suggested as important hot spots for stable binding of inhibitor by molecular dynamic simulation. Our results reveal an important position shifting within catalytic site for non-inhibited proteins. Together with hot spots found by molecular dynamic simulation, the results provide important information of inhibition mechanism and will be referenced for designing novel inhibitors.  相似文献   
205.
The typical two-component regulatory systems (TCSs), consisting of response regulator and histidine kinase, play a central role in survival of pathogenic bacteria under stress conditions such as nutrient starvation, hypoxia, and nitrosative stress. A total of 11 complete paired two-component regulatory systems have been found in Mycobacterium tuberculosis, including a few isolated kinase and regulatory genes. Increasing evidence has shown that TCSs are closely associated with multiple physiological process like intracellular persistence, pathogenicity, and metabolism. This review gives the two-component signal transduction systems in M. tuberculosis and their signal transduction roles in adaption to the environment.  相似文献   
206.
Recently, numerous microRNAs (miRNAs) have been considered as key players in the regulation of neuronal processes. The purpose of the present study is to explore the effect of miR-25 on hippocampal neuron injury in Alzheimer's disease (AD) induced by amyloid β (Aβ) peptide fragment 1 to 42 (Aβ1-42) via Kruppel-like factor 2 (KLF2) through the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway. A mouse model of AD was established through Aβ1-42 induction. The underlying regulatory mechanisms of miR-25 were analyzed through treatment of miR-25 mimics, miR-25 inhibitors, or small interfering RNA (siRNA) against KLF2 in hippocampal tissues and cells isolated from AD mice. The targeting relationship between miR-25 and KLF2 was predicted using a target prediction program and verified by luciferase activity determination. MTT assay was used to evaluate the proliferative ability and flow cytometry to detect cell cycle distribution and apoptosis. KLF2 was confirmed as a target gene of miR-25. When the mice were induced by Aβ1-42, proliferation was suppressed while apoptosis was promoted in hippocampal neurons as evidenced by lower levels of KLF2, Nrf2, haem oxygenase, glutathione S transferase α1, glutathione, thioredoxin, and B-cell lymphoma-2 along with higher bax level. However, such alternations could be reversed by treatment of miR-25 inhibitors. These findings indicate that miR-25 may inhibit hippocampal neuron proliferation while promoting apoptosis, thereby aggravating hippocampal neuron injury through downregulation of KLF2 via the Nrf2 signaling pathway.  相似文献   
207.
Polycystic ovarian syndrome (PCOS) is one of the most prevalent endocrinopathies and the leading cause of anovulatory infertility, but its pathogenesis remains elusive. Although HB-EGF is involved in ovarian cancer progression, there is still no clarity about its relevance with PCOS. The present study exhibited that abundant HB-EGF was noted in follicular fluid from PCOS women, where it might induce the granulosa cells (GCs) production of more estrogen via the elevation of CYP19A1 expression after binding to EGFR. Furthermore, HB-EGF transduced intracellular downstream cAMP-PKA signaling to promote the phosphorylation of JNK and ERK whose blockage impeded the induction of HB-EGF on estrogen secretion. Meanwhile, HB-EGF enhanced the accumulation of intracellular Ca2+ whose chelation by BAPTA-AM abrogated the stimulation of HB-EGF on FOXO1 along with an obvious diminishment for estrogen production. cAMP-PKA-JNK/ERK-Ca2+ pathway played an important role in the crosstalk between HB-EGF and FOXO1. Treatment of GCs with HB-EGF resulted in mitochondrial dysfunction as evinced by the reduction of ATP content, mtDNA copy number and mitochondrial membrane potential. Additionally, HB-EGF facilitated the opening of mitochondrial permeability transition pore via targeting BAX and raised the release of cytochrome C from mitochondria into the cytosol to trigger the apoptosis of GCs, but this effectiveness was counteracted by estrogen receptor antagonist. Collectively, HB-EGF might induce mitochondrial dysfunction and GCs apoptosis through advancing estrogen hypersecretion dependent on cAMP-PKA-JNK/ERK-Ca2+-FOXO1 pathway and act as a promising therapeutic target for PCOS.  相似文献   
208.
Risk of metastasis is increased by the presence of chromosome 3 monosomy in uveal melanoma (UM). This study aimed to identify more accurate biomarker for risk of metastasis in UM. A total of 80 patients with UM from TCGA were assigned to two groups based on the metastatic status, and bioinformatic analyses were performed to search for critical genes for risk of metastasis. SLC25A38, located on chromosome 3, was the dominant downregulated gene in metastatic UM patients. Low expression of SLC25A38 was an independent predictive and prognostic factor in UM. The predictive potential of SLC25A38 expression was superior to that of pervious reported biomarkers in both TCGA cohort and GSE22138 cohort. Subsequently, its role in promoting metastasis was explored in vitro and in vivo. Knock-out of SLC25A38 could enhance the migration ability of UM cells, and promote distant metastasis in mice models. Through the inhibition of CBP/HIF-mediated pathway followed by the suppression of pro-angiogenic factors, SLC25A38 was situated upstream of metastasis-related pathways, especially angiogenesis. Low expression of SLC25A38 promotes angiogenesis and metastasis, and identifies increased metastatic risk and worse survival in UM patients. This finding may further improve the accuracy of prognostic prediction for UM.Subject terms: Eye cancer, Prognostic markers  相似文献   
209.
Osteoporosis is one of the leading forms of systemic diseases related to bone metabolism in the world. STARD3 N‐terminal like (STARD3NL) showed robust association with osteoporosis‐related traits. Yet, the molecular functional mechanisms of STARD3NL in osteoblasts is still obscure. In this study, we demonstrated a high level of STARD3NL expression in the bone tissues from the patients with low bone mass and ovariectomized (OVX)‐induced osteoporotic mice. We identified Stard3nl as a potent factor that negatively and positively regulates osteoblast differentiation and cell proliferation, respectively. Furthermore, inhibition of Stard3nl induced β‐catenin gene expression and the nuclear translocation of β‐catenin, as well as Wnt signalling activities, contributing to the activation of Wnt/β‐catenin signalling. Mechanistic studies revealed that Stard3nl bound with Annexin A2 (Anxa2) to suppress β‐catenin expression, resulting into the suppression of Wnt signalling and downstream osteogenic differentiation. Moreover, adeno‐associated virus 9 (AAV9)‐mediated silencing of Stard3nl reversed bone loss in OVX‐induced osteoporotic mice by the injection into the knee joints. Collectively, our study revealed that Stard3nl suppressed osteogenesis via binding with Anxa2, resulting into the inactivation of Wnt signalling. It also highlights the preventive and therapeutic potential of STARD3NL as a specific and novel target for osteoporotic patients.  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号