首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18405篇
  免费   1836篇
  国内免费   2307篇
  22548篇
  2024年   78篇
  2023年   334篇
  2022年   675篇
  2021年   1051篇
  2020年   734篇
  2019年   955篇
  2018年   797篇
  2017年   631篇
  2016年   841篇
  2015年   1190篇
  2014年   1399篇
  2013年   1462篇
  2012年   1732篇
  2011年   1576篇
  2010年   1013篇
  2009年   896篇
  2008年   1040篇
  2007年   928篇
  2006年   844篇
  2005年   732篇
  2004年   655篇
  2003年   659篇
  2002年   567篇
  2001年   324篇
  2000年   275篇
  1999年   217篇
  1998年   133篇
  1997年   118篇
  1996年   103篇
  1995年   70篇
  1994年   105篇
  1993年   54篇
  1992年   58篇
  1991年   44篇
  1990年   49篇
  1989年   37篇
  1988年   32篇
  1987年   26篇
  1986年   19篇
  1985年   33篇
  1984年   14篇
  1983年   15篇
  1982年   15篇
  1981年   3篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1973年   2篇
  1971年   2篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
The self‐assembling MexA‐MexB‐OprM efflux pump system, encoded by the mexO operon, contributes to facile resistance of Pseudomonas aeruginosa by actively extruding multiple antimicrobials. MexR negatively regulates the mexO operon, comprising two adjacent MexR binding sites, and is as such highly targeted by mutations that confer multidrug resistance (MDR). To understand how MDR mutations impair MexR function, we studied MexR‐wt as well as a selected set of MDR single mutants distant from the proposed DNA‐binding helix. Although DNA affinity and MexA‐MexB‐OprM repression were both drastically impaired in the selected MexR‐MDR mutants, MexR‐wt bound its two binding sites in the mexO with high affinity as a dimer. In the MexR‐MDR mutants, secondary structure content and oligomerization properties were very similar to MexR‐wt despite their lack of DNA binding. Despite this, the MexR‐MDR mutants showed highly varying stabilities compared with MexR‐wt, suggesting disturbed critical interdomain contacts, because mutations in the DNA‐binding domains affected the stability of the dimer region and vice versa. Furthermore, significant ANS binding to MexR‐wt in both free and DNA‐bound states, together with increased ANS binding in all studied mutants, suggest that a hydrophobic cavity in the dimer region already shown to be involved in regulatory binding is enlarged by MDR mutations. Taken together, we propose that the biophysical MexR properties that are targeted by MDR mutations—stability, domain interactions, and internal hydrophobic surfaces—are also critical for the regulation of MexR DNA binding.  相似文献   
62.
Polo-like kinase 1 is a serine/threonine kinase which plays an essential role in mitosis and malignant transformation. The aim of this study was to investigate the prognostic significance of polo-like kinase 1 expression and determine its possibility as a therapeutic target in non-small cell lung cancer. Semi-quantitative RT-PCR assay was performed to detect polo-like kinase 1 mRNA expression in non-small cell lung cancer cells or tissues. Immunohistochemistry was performed to detect polo-like kinase 1 protein expression in 100 non-small cell lung cancer tissue samples, and the associations of polo-like kinase 1 expression with clinicopathological factors or prognosis of non-small cell lung cancer patients were evaluated. RNA interference was employed to inhibit endogenous polo-like kinase 1 expression and analyzed the effects of polo-like kinase 1 inhibition on the malignant phenotypes of non-small cell lung cancer cells including growth, apoptosis, radio- or chemoresistance. Also, the possible molecular mechanisms were also investigated. The levels of polo-like kinase 1 mRNA expression in non-small cell lung cancer cell lines or tissues were significantly higher than those in normal human bronchial epithelial cell line or corresponding non-tumor tissues. High polo-like kinase 1 expression was significantly correlated with advanced clinical stage, higher tumor classification and lymph node metastasis of non-small cell lung cancer patients (P = 0.001, 0.004 and 0.001, respectively). Meanwhile, high polo-like kinase 1 protein expression was also an independent prognostic molecular marker for non-small cell lung cancer patients (hazard ratio: 2.113; 95% confidence interval: 1.326-3.557; P = 0.017). Polo-like kinase 1 inhibition could significantly inhibit in vitro and in vivo proliferation, induce cell arrest of G2/M phase and apoptosis enhancement in non-small cell lung cancer cells, which might be activation of the p53 pathway and the Cdc25C/cdc2/cyclin B1 feedback loop. Further, inhibition of polo-like kinase 1 could enhance the sensitivity of non-small cell lung cancer cells to taxanes or irradiation. Thus, polo-like kinase 1 might be a prognostic marker and a chemo- or radiotherapeutic target for non-small cell lung cancer.  相似文献   
63.
The role of hydrogen peroxide (H(2)O(2)) in abscisic acid (ABA)-induced anthocyanin accumulation in detached and intact leaves of rice seedlings was investigated. Treatment with ABA resulted in an accumulation of anthocyanins in detached rice leaves. Dimethylthiourea, a chemical trap for H(2)O(2), was observed to be effective in inhibiting ABA-induced accumulation of anthocyanins. Inhibitors of NADPH oxidase (diphenyleneiodonium chloride and imidazole), phosphatidylinositol 3-kinase (wortmannin and LY 294002), and a donor of nitric oxide (N-tert-butyl-alpha-phenylnitrone), which have previously been shown to prevent ABA-induced H(2)O(2) accumulation in detached rice leaves, inhibited ABA-induced anthocyanin increase. Exogenous application of H(2)O(2), however, was found to increase the anthocyanin content of detached rice leaves. In terms of H(2)O(2) accumulation, intact (attached) leaves of rice seedlings of cultivar Taichung Native 1 (TN1) are ABA sensitive and those of cultivar Tainung 67 (TNG67) are ABA insensitive. Upon treatment with ABA, H(2)O(2) and anthocyanins accumulated in leaves of TN1 seedlings but not in leaves of TNG67. Our results, obtained from detached and intact leaves of rice seedlings, suggest that H(2)O(2) is involved in ABA-induced anthocyanin accumulation in this species.  相似文献   
64.
In studying how environmental factors control the population dynamics of Pfiesteria piscicida Steidinger et Burkholder, we examined the influence of light regime on kleptoplastidic photosynthesis, growth, and grazing. Prey (Rhodomonas sp.)‐saturated growth rate of P. piscicida increased (0.67 ± 0.03 d?1 to 0.91 ± 0.11 d?1) with light intensity varying from 0 to 200 μmol photons·m?2·s?1. No significant effect was observed on grazing, excluding the possibility that light enhanced P. piscicida growth through stimulating grazing. Light‐grown P. piscicida exhibited a higher gross growth efficiency (0.78 ± 0.10) than P. piscicida incubated in the dark (0.32 ± 0.16), and photosynthetic inhibitors significantly decreased growth of recently fed populations. These results demonstrate a role of kleptoplastidic photosynthesis in enhancing growth in P. piscicida. However, when the prey alga R. sp. was depleted, light's stimulating effect on P. piscicida growth diminished quickly, coinciding with rapid disappearance of Rhodomonas‐derived pigments and RUBISCO from P. piscicida cells. Furthermore, the effect of light on growth was reversed after extended starvation, and starved light‐grown P. piscicida declined at a rate significantly greater than dark‐incubated cultures. The observed difference in rates of decline appeared to be attributable to light‐dependent cannibalism. Using a 5‐chloromethylfluorescein diacetate staining technique, cannibalistic grazing was observed after 7 days of starvation, at a rate four times greater under illumination than in the dark. The results from this study suggest that kleptoplastidy enhances growth of P. piscicida only in the presence of algal prey. When prey is absent, P. piscicida populations may become vulnerable to light‐stimulated cannibalism.  相似文献   
65.
M Kim  H Yi  YJ Cho  J Jang  HG Hur  J Chun 《Journal of bacteriology》2012,194(18):5149-5150
An enteric bacterium, Escherichia coli W26 (KACC 16630), was isolated from feces from a healthy cow in South Korea. Here, we report the draft genome sequence of the isolate, which is closely affiliated with commensal strains belonging to E. coli phylogroup B1.  相似文献   
66.
Carbonaceous materials have emerged as promising anode candidates for potassium‐ion batteries (PIBs) due to overwhelming advantages including cost‐effectiveness and wide availability of materials. However, further development in this realm is handicapped by the deficiency in their in‐target and large‐scale synthesis, as well as their low specific capacity and huge volume expansion. Herein the precise and scalable synthesis of N/S dual‐doped graphitic hollow architectures (NSG) via direct plasma enhanced chemical vapor deposition is reported. Thus‐fabricated NSG affording uniform nitrogen/sulfur co‐doping, possesses ample potassiophilic surface moieties, effective electron/ion‐transport pathways, and high structural stability, which bestow it with high rate capability (≈100 mAh g?1 at 20 A g?1) and a prolonged cycle life (a capacity retention rate of 90.2% at 5 A g?1 after 5000 cycles), important steps toward high‐performance K‐ion storage. The enhanced kinetics of the NSG anode are systematically probed by theoretical simulations combined with operando Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy, and galvanostatic intermittent titration technique measurements. In further contexts, printed NSG electrodes with tunable mass loading (1.84, 3.64, and 5.65 mg cm?2) are realized to showcase high areal capacities. This study demonstrates the construction of a printable carbon‐based PIB anode, that holds great promise for next‐generation grid‐scale PIB applications.  相似文献   
67.
68.
Aluminium (Al) toxicity is the most important limiting factor for crop production in acid soil environments worldwide. In some plant species, application of magnesium (Mg(2+)) can alleviate Al toxicity. However, it remains unknown whether overexpression of magnesium transport proteins can improve Al tolerance. Here, the role of AtMGT1, a member of the Arabidopsis magnesium transport family involved in Mg(2+) transport, played in Al tolerance in higher plants was investigated. Expression of 35S::AtMGT1 led to various phenotypic alterations in Nicotiana benthamiana plants. Transgenic plants harbouring 35S::AtMGT1 exhibited tolerance to Mg(2+) deficiency. Element assay showed that the contents of Mg, Mn, and Fe in 35S::AtMGT1 plants increased compared with wild-type plants. Root growth experiment revealed that 100 microM AlCl(3) caused a reduction in root elongation by 47% in transgenic lines, whereas root growth in wild-type plants was inhibited completely. Upon Al treatment, representative transgenic lines also showed a much lower callose deposition, an indicator of increased Al tolerance, than wild-type plants. Taken together, the results have demonstrated that overexpression of ATMGT1 encoding a magnesium transport protein can improve tolerance to Al in higher plants.  相似文献   
69.
Fibrotic aortic valve disease (FAVD) is an important cause of aortic stenosis, yet currently there is no effective treatment for FAVD due to its unknown etiology. The purpose of this study was to investigate whether deficiency in the anti‐aging Klotho gene (KL) promotes high‐fat‐diet‐induced FAVD and to explore the underlying molecular mechanism. Heterozygous Klotho‐deficient (KL+/?) mice and WT littermates were fed with a high‐fat diet (HFD) or normal diet for 13 weeks, followed by treatment with the AMPKα activator (AICAR) for an additional 2 weeks. A HFD caused a greater increase in collagen levels in the aortic valves of KL+/? mice than of WT mice, indicating that Klotho deficiency promotes HFD‐induced aortic valve fibrosis (AVF). AMPKα activity (pAMPKα) was decreased, while protein expression of collagen I and RUNX2 was increased in the aortic valves of KL+/? mice fed with a HFD. Treatment with AICAR markedly attenuated HFD‐induced AVF in KL+/? mice. AICAR not only abolished the downregulation of pAMPKα but also eliminated the upregulation of collagen I and RUNX2 in the aortic valves of KL+/? mice fed with HFD. In cultured porcine aortic valve interstitial cells, Klotho‐deficient serum plus cholesterol increased RUNX2 and collagen I protein expression, which were attenuated by activation of AMPKα by AICAR. Interestingly, silencing of RUNX2 abolished the stimulatory effect of Klotho deficiency on cholesterol‐induced upregulation of matrix proteins, including collagen I and osteocalcin. In conclusion, Klotho gene deficiency promotes HFD‐induced fibrosis in aortic valves, likely through the AMPKα–RUNX2 pathway.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号