首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2343篇
  免费   165篇
  国内免费   116篇
  2024年   6篇
  2023年   18篇
  2022年   57篇
  2021年   125篇
  2020年   89篇
  2019年   85篇
  2018年   76篇
  2017年   65篇
  2016年   109篇
  2015年   139篇
  2014年   158篇
  2013年   196篇
  2012年   198篇
  2011年   184篇
  2010年   115篇
  2009年   92篇
  2008年   116篇
  2007年   110篇
  2006年   92篇
  2005年   70篇
  2004年   64篇
  2003年   57篇
  2002年   61篇
  2001年   40篇
  2000年   37篇
  1999年   30篇
  1998年   13篇
  1997年   15篇
  1996年   17篇
  1995年   17篇
  1994年   11篇
  1993年   12篇
  1992年   23篇
  1991年   17篇
  1990年   14篇
  1989年   9篇
  1988年   13篇
  1987年   11篇
  1986年   12篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1980年   5篇
  1975年   4篇
  1973年   4篇
  1971年   3篇
  1969年   3篇
  1968年   2篇
  1967年   2篇
排序方式: 共有2624条查询结果,搜索用时 453 毫秒
211.
212.
Human secreted proteins play a very important role in signal transduction. In order to study all potential secreted proteins identified from the human genome sequence, systematic production of large amounts of biologically active secreted proteins is a prerequisite. We selected 25 novel genes as a trial case for establishing a reliable expression system to produce active human secreted proteins in Escherichia coli. Expression of proteins with or without signal peptides was examined and compared in E. coli strains. The results indicated that deletion of signal peptides, to a certain extent, can improve the expression of these proteins and their solubilities. More importantly, under expression conditions such as induction temperature, N-terminus fusion peptides need to be optimized in order to express adequate amounts of soluble proteins. These recombinant proteins were characterized as well-folded proteins. This system enables us to rapidly obtain soluble and highly purified human secreted proteins for further functional studies.  相似文献   
213.
We determined the mitochondrial membrane status, presence of reactive oxygen species (ROS), and oxidative DNA adduct formation in normal human oral keratinocytes (NHOK) during senescence. The senescent cells showed accumulation of intracellular ROS and 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG), a major oxidative DNA adduct. Exposure of cells to H2O2 induced 8-oxo-dG accumulation in cellular DNA, which was rapidly removed in replicating NHOK. However, the 8-oxo-dG removal activity was almost completely abolished in the senescing culture. Both replicating and senescing NHOK expressed readily detectable 8-oxo-dG DNA glycosylase (hOGG1), the enzyme responsible for glycosidic cleavage of 8-oxo-dG. After exposure to H2O2, however, the intranuclear level of the hOGG1-alpha isoform was decreased in senescing but not in replicating NHOK. These results indicated that senescing NHOK accumulated oxidative DNA lesions in part due to increased level of endogenous ROS and impaired intranuclear translocation of hOGG1 enzyme upon exposure to oxidative stress.  相似文献   
214.
Mild one-pot protocols for the preparation of glycosyl bromides and alkyl bromides via in situ generation of HBr is reported here.  相似文献   
215.
Heme oxygenases from the bacterial pathogens Neisseriae meningitidis (nm-HO) and Pseudomonas aeruginosa (pa-HO) share significant sequence identity (37%). In nm-HO, biliverdin IXalpha is the sole product of the reaction, whereas pa-HO yields predominantly biliverdin IXdelta. We have previously shown by NMR that the in-plane conformation of the heme in pa-HO is significantly different from that of nm-HO as a result of distinct interactions of the heme propionates with the protein scaffold [Caignan, G. A., Deshmukh, R., Wilks, A., Zeng, Y., Huang, H. W., Moenne-Loccoz, P., Bunce, R. A., Eastman, M. A., and Rivera, M. (2002) J. Am. Chem. Soc. 124, 14879-14892]. In the report presented here, we have extended these studies to investigate the role of the distal helix by preparing a chimera of nm-HO (nm-HOch), in which distal helix residues 107-142 of nm-HO have been replaced with the corresponding residues of the delta-regioselective pa-HO (112-147). Electronic absorption spectra, resonance Raman and FTIR spectroscopic studies confirm that the orientation and hydrogen bonding properties of the proximal His ligand are not significantly altered in the chimera relative those of the wild-type proteins. The catalytic turnover of the nm-HOch-heme complex yields almost exclusively alpha-biliverdin and a small but reproducible amount of delta-biliverdin. NMR spectroscopic studies reveal that the altered regioselectivity in the chimeric protein likely stems from a dynamic equilibrium between two alternate in-plane conformations of the heme (in-plane heme disorder). Replacement of K16 with Ala and Met31 with Lys in the chimeric protein in an effort to tune key polypeptide-heme propionate contacts largely stabilizes the in-plane conformer conducive to delta-meso hydroxylation.  相似文献   
216.
The heme coordination chemistry and spectroscopic properties of Rhodobacter capsulatus cytochrome c' (RCCP) have been compared to data from Alcaligenes xylosoxidans (AXCP), with the aim of understanding the basis for their different reactivities with nitric oxide (NO). Whereas ferrous AXCP reacts with NO to form a predominantly five-coordinate heme-nitrosyl complex via a six-coordinate intermediate, RCCP forms an equilibrium mixture of six-coordinate and five-coordinate heme-nitrosyl species in approximately equal proportions. Ferrous RCCP and AXCP both exhibit high Fe-His stretching frequencies (227 and 231 cm(-)(1), respectively), suggesting that factors other than the Fe-His bond strength account for their differences in heme-nitrosyl coordination number. Resonance Raman spectra of ferrous-nitrosyl RCCP confirm the presence of both five-coordinate and six-coordinate heme-NO complexes. The six-coordinate heme-nitrosyl of RCCP exhibits a fairly typical Fe-NO stretching frequency (569 cm(-)(1)), in contrast to the relatively high value (579 cm(-)(1)) of the AXCP six-coordinate heme-nitrosyl intermediate. It is proposed that NO experiences greater steric hindrance in binding to the distal face of AXCP, as compared to RCCP, leading to a more distorted Fe-N-O geometry and an elevated Fe-NO stretching frequency. Evidence that RCCP has a more accessible distal coordination site than in AXCP stems from the fact that ferric RCCP readily forms a heme complex with exogenous imidazole, whereas AXCP does not. A model is proposed in which distal heme-face accessibility, rather than the proximal Fe-His bond strength, determines the heme-nitrosyl coordination number in cytochromes c'.  相似文献   
217.
218.
Varicella-zoster virus (VZV) glycoprotein E (gE) is essential for VZV replication. To further analyze the functions of gE in VZV replication, a full deletion and point mutations were made in the 62-amino-acid (aa) C-terminal domain. Targeted mutations were introduced in YAGL (aa 582 to 585), which mediates gE endocytosis, AYRV (aa 568 to 571), which targets gE to the trans-Golgi network (TGN), and SSTT, an "acid cluster" comprising a phosphorylation motif (aa 588 to 601). Substitutions Y582G in YAGL, Y569A in AYRV, and S593A, S595A, T596A, and T598A in SSTT were introduced into the viral genome by using VZV cosmids. These experiments demonstrated a hierarchy in the contributions of these C-terminal motifs to VZV replication and virulence. Deletion of the gE C terminus and mutation of YAGL were lethal for VZV replication in vitro. Mutations of AYRV and SSTT were compatible with recovery of VZV, but the AYRV mutation resulted in rapid virus spread in vitro and the SSTT mutation resulted in higher virus titers than were observed for the parental rOka strain. When the rOka-gE-AYRV and rOka-gE-SSTT mutants were evaluated in skin and T-cell xenografts in SCIDhu mice, interference with TGN targeting was associated with substantial attenuation, especially in skin, whereas the SSTT mutation did not alter VZV infectivity in vivo. These results provide the first information about how targeted mutations of this essential VZV glycoprotein affect viral replication in vitro and VZV virulence in dermal and epidermal cells and T cells within intact tissue microenvironments in vivo.  相似文献   
219.
Sp1和Sp3介导的转录调控   总被引:1,自引:0,他引:1  
基本转录因子Sp1和Sp3对转录调控区GC盒有很强的亲和力,参与几乎所有细胞功能,包括细胞增殖、凋亡、分化和新生物的转化.但在同一细胞中Sp1和Sp3对不同基因的作用并不相同,二者对基因特异性的转录调控是Sp1和Sp3研究领域的重要问题.近年来发现,Sp1和Sp3自身表达水平、结合的靶序列、磷酸化、糖基化等翻译后修饰,其他蛋白质的结合以及染色质结构与修饰等方面均可影响Sp1和Sp3的转录活性.本文从Sp1和Sp3蛋白参与转录调节的机制以及影响其基因特异性转录活性的诸方面因素这两大侧面,介绍了近年来的最新进展.  相似文献   
220.
DNA damage repair is an important cell function for genome integrity and its deregulation can lead to genomic instability and development of malignancies. Sumoylation is an increasingly important ubiquitin-like modification of proteins affecting protein stability, enzymatic activity, nucleocytoplasmic trafficking, and protein-protein interactions. In particular, several important DNA repair enzymes are subject to sumoylation, which appears to play a role in copping with DNA damage insults. Recent reports indicate that Ubc9, the single SUMO E2 enzyme catalyzing the conjugation of SUMO to target proteins, is overexpressed in certain tumors, such as lung adenocarcinoma, ovarian carcinoma and melanoma, suggestive of its clinic significance. This review summarizes the most important DNA damage repair pathways which are potentially affected by Ubc9/SUMO and their role in regulating the function of several proteins involved in the DNA damage repair machinery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号