首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38978篇
  免费   2985篇
  国内免费   2900篇
  44863篇
  2024年   97篇
  2023年   514篇
  2022年   1175篇
  2021年   2153篇
  2020年   1358篇
  2019年   1714篇
  2018年   1724篇
  2017年   1175篇
  2016年   1642篇
  2015年   2398篇
  2014年   2830篇
  2013年   3073篇
  2012年   3576篇
  2011年   3164篇
  2010年   1988篇
  2009年   1615篇
  2008年   1968篇
  2007年   1719篇
  2006年   1586篇
  2005年   1287篇
  2004年   1052篇
  2003年   909篇
  2002年   758篇
  2001年   664篇
  2000年   588篇
  1999年   628篇
  1998年   351篇
  1997年   364篇
  1996年   344篇
  1995年   316篇
  1994年   332篇
  1993年   263篇
  1992年   311篇
  1991年   242篇
  1990年   213篇
  1989年   189篇
  1988年   127篇
  1987年   101篇
  1986年   92篇
  1985年   86篇
  1984年   59篇
  1983年   53篇
  1982年   34篇
  1981年   9篇
  1980年   9篇
  1979年   11篇
  1976年   1篇
  1965年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
C Dou  N Ding  J Xing  C Zhao  F Kang  T Hou  H Quan  Y Chen  Q Dai  F Luo  J Xu  S Dong 《Cell death & disease》2016,7(3):e2162
Dihydroartemisinin (DHA) is a widely used antimalarial drug isolated from the plant Artemisia annua. Recent studies suggested that DHA has antitumor effects utilizing its reactive oxygen species (ROS) yielding mechanism. Here, we reported that DHA is inhibitory on lipopolysaccharide (LPS)-induced osteoclast (OC) differentiation, fusion and bone-resorption activity in vitro. Intracellular ROS detection revealed that DHA could remarkably increase ROS accumulation during LPS-induced osteoclastogenesis. Moreover, cell apoptosis was also increased by DHA treatment. We found that DHA-activated caspase-3 increased Bax/Bcl-2 ratio during LPS-induced osteoclastogenesis. Meanwhile, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c from the mitochondria into the cytosol were observed, indicating that ROS-mediated mitochondrial dysfunction is crucial in DHA-induced apoptosis during LPS-induced osteoclastogenesis. In vivo study showed that DHA treatment decreased OC number, prevents bone loss, rescues bone microarchitecture and restores bone strength in LPS-induced bone-loss mouse model. Together, our findings indicate that DHA is protective against LPS-induced bone loss through apoptosis induction of osteoclasts via ROS accumulation and the mitochondria-dependent apoptosis pathway. Therefore, DHA may be considered as a new therapeutic candidate for treating inflammatory bone loss.Bone is a dynamic organ that undergoes continuous remodeling throughout life. Bone homeostasis is maintained by a balanced bone-resorbing and bone-forming process. In this process, hematopoietic stem cells or monocytes/macrophage progenitor cell-derived osteoclasts (OCs) are mainly responsible for bone resorption.1 Abnormal OC function is associated with numerous diseases, and most of them are due to excessive osteoclastic activity. These diseases include osteoporosis, rheumatoid arthritis and periodontitis.2, 3 Two of the most important regulating factors during OC differentiation are receptor activator of nuclear factor κB ligand (RANKL) and macrophage-colony-stimulating factor (M-CSF).4, 5 Binding of RANKL to RANK results in the initiation of the TNF receptor-associated factor 6 signaling, which activates nuclear factor-κB, Akt and MAP kinase (ERk, JNK and p-38), and eventually leads to the proliferation, differentiation and maturation of OCs.6, 7Lipopolysaccharide (LPS) is an important component of the outer membrane of Gram-negative bacteria. In LPS-induced bone loss, many factors are involved including local host response, prostanoids and cytokine production, inflammatory cell recruitment and OC activation.8, 9, 10 Experimental evidence have shown that LPS-mediated inflammation is highly dependent on reactive oxygen species (ROS) and the associated downstream MAPK signaling pathways including ERK, JNK and p-38.11, 12 ROS has been shown having an important role in the process of OC differentiation, survival, activation and bone resorption.13, 14, 15, 16 It has also been proved that ROS production in OC and intracellular hydrogen peroxide accumulation is critical for osteoclastogenesis and skeletal homeostasis.17 Recently, a study reported that LPS induces OC formation via the ROS-mediated JNK and STAT3 pathway, which could be blocked by peroxiredoxin II.18Dihydroartemisinin (DHA) is the main active metabolite isolated from the plant Artemisia annua. DHA has been widely used as first-line therapeutics against falciparum malaria.19 Recent evidence suggested that DHA has antitumor effects because of its unique cytotoxicity mechanism.20 In particular, studies reported that DHA is pro-apoptotic in tumor cell lines regarding breast and prostate cancer.21, 22 Although the detailed mechanism of DHA cytotoxicity and pro-apoptotic effects is not fully understood, DHA-mediated ROS production has a central role.23, 24 However, the effect of DHA on bone health has not been studied.In the present study, we reported that DHA could attenuate LPS-induced OC differentiation, fusion and bone-resorption activity in vitro. Our data showed that DHA-induced cell apoptosis during LPS-induced osteoclastogenesis via intracellular ROS generation and mitochondria-mediated pathways. DHA administration in LPS-induced mouse models decreased OC number and reversed bone loss in vivo.  相似文献   
993.
Increasing evidence shows that oxidative stress and the hyperphosphorylation of tau protein play essential roles in the progression of Alzheimer’s disease (AD). Quercetin is a major flavonoid that has anti-oxidant, anti-cancer and anti-inflammatory properties. We investigated the neuroprotective effects of quercetin to HT22 cells (a cell line from mouse hippocampal neurons). We found that Okadaic acid (OA) induced the hyperphosphorylation of tau protein at Ser199, Ser396, Thr205, and Thr231 and produced oxidative stress to the HT22 cells. The oxidative stress suppressed the cell viability and decreased the levels of lactate dehydrogenase (LDH), superoxide dismutase (SOD), mitochondria membrane potential (MMP) and Glutathione peroxidase (GSH-Px). It up-regulated malondialdehyde (MDA) production and intracellular reactive oxygen species (ROS). In addition, phosphoinositide 3 kinase/protein kinase B/Glycogen synthase kinase3β (PI3K/Akt/GSK3β) and mitogen activated protein kinase (MAPK) were also involved in this process. We found that pre-treatment with quercetin can inhibited OA-induced the hyperphosphorylation of tau protein and oxidative stress. Moreover, pre-treatment with quercetin not only inhibited OA-induced apoptosis via the reduction of Bax, and up-regulation of cleaved caspase 3, but also via the inhibition of PI3K/Akt/GSK3β, MAPKs and activation of NF-κB p65. Our findings suggest the therapeutic potential of quercetin to treat AD.  相似文献   
994.
The assumption that total abundance of RNAs in a cell is roughly the same in different cells is underlying most studies based on gene expression analyses. But experiments have shown that changes in the expression of some master regulators such as c-MYC can cause global shift in the expression of almost all genes in some cell types like cancers. Such shift will violate this assumption and can cause wrong or biased conclusions for standard data analysis practices, such as detection of differentially expressed (DE) genes and molecular classification of tumors based on gene expression. Most existing gene expression data were generated without considering this possibility, and are therefore at the risk of having produced unreliable results if such global shift effect exists in the data. To evaluate this risk, we conducted a systematic study on the possible influence of the global gene expression shift effect on differential expression analysis and on molecular classification analysis. We collected data with known global shift effect and also generated data to simulate different situations of the effect based on a wide collection of real gene expression data, and conducted comparative studies on representative existing methods. We observed that some DE analysis methods are more tolerant to the global shift while others are very sensitive to it. Classification accuracy is not sensitive to the shift and actually can benefit from it, but genes selected for the classification can be greatly affected.  相似文献   
995.
Hyperuricemia (HU) often progresses to combine with non-alcoholic fatty liver disease (NAFLD) in the clinical scenario, which further exacerbates metabolic disorders; early detection of biomarkers, if obtained during the HU progression, may be beneficial for preventing its combination with NAFLD. This study aimed to decipher the biomarkers and mechanisms of the development of steatosis in HU. Four groups of subjects undergoing health screening, including healthy subjects, subjects with HU, subjects with HU combined with NAFLD (HU+NAFLD) and subjects with HU initially and then with HU+NAFLD one year later (HU→HU+NAFLD), were recruited in this study. The metabolic profiles of all subjects’ serum were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry. The metabolomic data from subjects with HU and HU+NAFLD were compared, and the biomarkers for the progression from HU to HU+NAFLD were predicted. The metabolomic data from HU→HU+NAFLD subjects were collected for further verification. The results showed that the progression was associated with disturbances of phospholipase metabolism, purine nucleotide degradation and Liver X receptor/retinoic X receptor activation as characterized by up-regulated phosphatidic acid, cholesterol ester (18:0) and down-regulated inosine. These metabolic alterations may be at least partially responsible for the development of steatosis in HU. This study provides a new paradigm for better understanding and further prevention of disease progression.  相似文献   
996.
Piwi-interacting RNAs (piRNAs) play a key role in spermatogenesis. Here, we describe the piRNAs profiling of primordial germ cells (PGCs), spermatogonial stem cells (SSCs), and the spermatogonium (Sp) during early-stage spermatogenesis in chicken. We obtained 31,361,989 reads from PGCs, 31,757,666 reads from SSCs, and 46,448,327 reads from Sp cells. The length distribution of piRNAs in the three samples showed peaks at 33 nt. The resulting genes were subsequently annotated against the Gene Ontology (GO) database. Five genes (RPL7A, HSPA8, Pum1, CPXM2, and PRKCA) were found to be involved in cellular processes. Interactive pathway analysis (IPA) further revealed three important pathways in early-stage spermatogenesis including the FGF, Wnt, and EGF receptor signaling pathways. The gene Pum1 was found to promote germline stem cell proliferation, but it also plays a role in spermatogenesis. In conclusion, we revealed characteristics of piRNAs during early spermatogonial development in chicken and provided the basis for future research.  相似文献   
997.
Maternal smoking or use of other products containing nicotine during pregnancy can have significant adverse consequences for respiratory function in neonates. We have shown, in previous studies, that developmental nicotine exposure (DNE) in a model system compromises the normal function of respiratory circuits within the brainstem. The effects of DNE include alterations in the excitability and synaptic interactions of the hypoglossal motoneurons, which innervate muscles of the tongue. This study was undertaken to test the hypothesis that these functional consequences of DNE are accompanied by changes in the dendritic morphology of hypoglossal motoneurons. Hypoglossal motoneurons in brain stem slices were filled with neurobiotin during whole‐cell patch clamp recordings and subjected to histological processing to reveal dendrites. Morphometric analysis, including the Sholl method, revealed significant effects of DNE on dendritic branching patterns. In particular, whereas within the first five postnatal days there was significant growth of the higher‐order dendritic branches of motoneurons from control animals, the growth was compromised in motoneurons from neonates that were subjected to DNE. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1125–1137, 2016  相似文献   
998.

Purpose

To explore expression and function of astrocyte elevated gene-1 (AEG-1) in human retinoblastoma (RB).

Methods

The expression of AEG-1 in histological sections of human RBs and in RB cell lines was examined using immunohistochemical staining and RT-PCR and Western blotting respectively. We knocked down AEG-1 gene levels by AEG-1-siRNA lentivirus transfection of human RB cell lines SO-RB50 and Y79, and using an MTT assay, we assessed the role of AEG-1 on RB cell proliferation. The biological significance of lentivirus transfection induced AEG-1 down-regulation was examined by assessing the apoptosis rate in the transfected RB cells by Annexin V-APC staining and flow cytometry. We additionally measured the expression of Bcl-2, Bax, cleaved-caspase-3 and caspase-3, and the phosphorylation and non-phosphorylation alternation of MAPKs.

Results

AEG-1 expression was detected to be strongly positive in the histological slides of 35 out of 54 (65%) patients with RB. AEG-1 expression increased significantly (P<0.05) with tumor stage. In the RB cell lines SO-RB50, Y79 and WERI-RB1 as compared with retinal pigment epithelium cells, expression of AEG-1 mRNA and AEG-1 protein was significantly higher. In AEG-1-siRNA lentivirus transfected cell cultures as compared with negative control lentivirus transfected cell cultures, levels of AEG-1 mRNA and of AEG-1 protein (P<0.05) and cell growth rates (P<0.01) were significantly lower, and apoptosis rate (P<0.001), Bax/Bcl-2 ratio and cleaved-caspase-3 protein level were significantly increased. The P-ERK/ERK ratio was significantly decreased in the AEG-1-siRNA lentivirus transfected cell lines.

Conclusions

Expression of AEG-1 was associated with RB, in histological slides of patients and in cell culture experiments. Lentivirus transfection induced knockdown of AEG-1 had a tumor suppressive effect, potentially by tumor cell apoptosis induction through inhibition of ERK.  相似文献   
999.
1000.

Background and Aims

Protein tyrosine phosphatase 1B (PTP1B) is a novel therapeutic target for type-2 diabetes, which negatively regulates the insulin signaling transduction. Bis (2, 3-dibromo-4, 5-dihydroxybenzyl) ether (BDDE), a novel bromophenol isolated from the Red Alga, is a novel PTP1B inhibitor. But the anti-diabetic effects are not clear. In the present study, we evaluated the in vitro and in vivo antidiabetic effects of BDDE.

Methods

The insulin-resistant HepG2 cells were used to evaluate the in vitro antidiabetic effects of BDDE. MTT assay was used to determine the safety concentrations in HepG2 cells. Glucose assay kit was used to check glucose uptake after treated with BDDE. Western blotting assay was used to explore the potent mechanisms. The db/db mice were used to evaluate the in vivo antidiabetic effects of BDDE. Body weight, blood glucose, Glycated hemoglobin (HbA1c), lipid profile, and insulin level were checked at the respective time points. Gastrocnemii were dissected and used to analyze the PTP1B and insulin receptor β (IRβ) expression.

Results

BDDE increased the insulin-resisted glucose uptake in HepG2 cells. BDDE also decreased the expression of PTP1B and activated the substrates and downstream signals in insulin signal pathway, such as IRβ, insulin receptor substrate-1/2 (IRS1/2), phosphoinositide 3-kinase (PI3K), and protein kinase B (PKB/Akt). In the db/db mice model, BDDE significantly decreased the blood glucose, HbA1c and triglyceride (TG) levels. BDDE also decreased the expression of PTP1B and activated the phosphorylation of IRβ in gastrocnemii. Moreover, BDDE at high doses downregulated the body weight without affecting food and water intake.

Conclusion

Our results suggest that BDDE as a new PTP1B inhibitor improves glucose metabolism by stimulating the insulin signaling and could be used in the treatment of type-2 diabetes mellitus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号