首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166631篇
  免费   12806篇
  国内免费   11323篇
  2024年   211篇
  2023年   1775篇
  2022年   4424篇
  2021年   7724篇
  2020年   5119篇
  2019年   6436篇
  2018年   6388篇
  2017年   4677篇
  2016年   6660篇
  2015年   9625篇
  2014年   11419篇
  2013年   12290篇
  2012年   14626篇
  2011年   13609篇
  2010年   8381篇
  2009年   7211篇
  2008年   8530篇
  2007年   7626篇
  2006年   6773篇
  2005年   5652篇
  2004年   5117篇
  2003年   4316篇
  2002年   3709篇
  2001年   3365篇
  2000年   3032篇
  1999年   3019篇
  1998年   1674篇
  1997年   1809篇
  1996年   1633篇
  1995年   1502篇
  1994年   1478篇
  1993年   1323篇
  1992年   1664篇
  1991年   1356篇
  1990年   1025篇
  1989年   924篇
  1988年   762篇
  1987年   631篇
  1986年   566篇
  1985年   573篇
  1984年   315篇
  1983年   276篇
  1982年   191篇
  1981年   156篇
  1980年   126篇
  1979年   131篇
  1978年   82篇
  1977年   70篇
  1974年   78篇
  1972年   66篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
112.
It is generally perceived that landscape patterns or textures in a given protected area are spatially stationary. The findings of this study suggest that this common perception is only partially correct. Over the course of 52 years, equilibrium in landscape shifting was detected using digital data for the Lassen Volcanic National Park (USA). Vertical aerial photographs taken of the park in 1941 were geo-referenced with the digital orthophoto quarter quadrangle (DOQQ) images of the same area from 1993 to identify landscape compositions and to measure change. Spatial analysis was used to observe pattern changes over time. The results suggested that landscape development maintained equilibrium while patches were in various stages of a successional sequence. The total area of each landscape component held steady, although over time patches throughout the landscape changed—a shifting-mosaic steady state (SMSS). These findings reflect the limitations of contemporary environmental conservation theory. They also suggest the importance of considering landscape change in policies that currently govern park planning and management.  相似文献   
113.
M Zhao  J W Eaton  U T Brunk 《FEBS letters》2001,509(3):405-412
B-cell leukemia/lymphoma 2 (Bcl-2) blocks oxidant-induced apoptosis at least partly by stabilizing lysosomes. Here we report that phosphorylation of Bcl-2 may be required for these protective effects. J774 cells overexpressing wild-type Bcl-2 resist oxidant-induced lysosomal leak as well as apoptosis, and this protection is amplified by pretreatment with phorbol 12-myristate 13-acetate (which promotes protein kinase C (PKC)-dependent phosphorylation of Bcl-2). In contrast, cells overexpressing the Bcl-2 mutant S70A (which cannot be phosphorylated) are not protected in either circumstance. Transfection with Bcl-2(S70E), a constitutively active Bcl-2 mutant which does not require phosphorylation, is protective independent of PKC activation. In contrast, C(2)-ceramide, a putative protein phosphatase 2A activator, abolishes the protective effects of wild-type Bcl-2 overexpression but does not diminish protection afforded by Bcl-2(S70E). Additional results suggest that, perhaps as a consequence of lysosomal stabilization, Bcl-2 may prevent activation of phospholipase A2, an event potentially important in the ultimate initiation of apoptosis.  相似文献   
114.
The GH3 family of acyl-acid-amido synthetases catalyze the ATP-dependent formation of amino acid conjugates to modulate levels of active plant hormones, including auxins and jasmonates. Initial biochemical studies of various GH3s show that these enzymes group into three families based on sequence relationships and acyl-acid substrate preference (I, jasmonate-conjugating; II, auxin- and salicylic acid-conjugating; III, benzoate-conjugating); however, little is known about the kinetic and chemical mechanisms of these enzymes. Here we use GH3-8 from Oryza sativa (rice; OsGH3-8), which functions as an indole-acetic acid (IAA)-amido synthetase, for detailed mechanistic studies. Steady-state kinetic analysis shows that the OsGH3-8 requires either Mg2+ or Mn2+ for maximal activity and is specific for aspartate but accepts asparagine as a substrate with a 45-fold decrease in catalytic efficiency and accepts other auxin analogs, including phenyl-acetic acid, indole butyric acid, and naphthalene-acetic acid, as acyl-acid substrates with 1.4–9-fold reductions in kcat/Km relative to IAA. Initial velocity and product inhibition studies indicate that the enzyme uses a Bi Uni Uni Bi Ping Pong reaction sequence. In the first half-reaction, ATP binds first followed by IAA. Next, formation of an adenylated IAA intermediate results in release of pyrophosphate. The second half-reaction begins with binding of aspartate, which reacts with the adenylated intermediate to release IAA-Asp and AMP. Formation of a catalytically competent adenylated-IAA reaction intermediate was confirmed by mass spectrometry. These mechanistic studies provide insight on the reaction catalyzed by the GH3 family of enzymes to modulate plant hormone action.  相似文献   
115.
Novel 2D van der Waals heterostructures with innovative bimetallic oxychloride (Bi‐ and Sb‐based oxychloride) nanosheets that are well dispersed on reduced graphene oxide nanosheets, are established through element engineering for superior potassium ion battery (PIBs) anodes. This material displays an exceptional electrochemical performance, obtaining a discharge capacity as high as 360 mAh g?1 at 100 mA g?1 after running 1000 cycles for over 9 months with a capacity preservation percentage of 88.5% and achieving a discharge capacity as high as 319 mAh g?1 at 1000 mA g?1, in addition to the low charge/discharge plateaus for anodes and promising full cell performance. More significantly, the nature of such 2D van der Waals heterostructures, including the element engineering for morphology control, the function of each component of heterostructures, the mechanism of potassium ion storage, and the process of K+ intercalation accompanied with the lattice distortion and chemical bond breakages, is explored in depth. This study is critical for not only paving the way for the practical application of PIBs but also shedding light on fundamentals of potassium ion storage in 2D van der Waals heterostructures.  相似文献   
116.
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a major pathogen of the economic insect silkworm, Bombyx mori. Virus‐encoded microRNAs (miRNAs) have been proven to play important roles in host–pathogen interactions. In this study we identified a BmCPV‐derived miRNA‐like 21 nt small RNA, BmCPV‐miR‐1, from the small RNA deep sequencing of BmCPV‐infected silkworm larvae by stem‐loop quantitative real‐time PCR (qPCR) and investigated its functions with qPCR and lentiviral expression systems. Bombyx mori inhibitor of apoptosis protein (BmIAP) gene was predicted by both target prediction software miRanda and Targetscan to be one of its target genes with a binding site for BmCPV‐miR‐1 at the 5′ untranslated region. It was found that the expression of BmCPV‐miR‐1 and its target gene BmIAP were both up‐regulated in BmCPV‐infected larvae. At the same time, it was confirmed that BmCPV‐miR‐1 could up‐regulate the expression of BmIAP gene in HEK293T cells with lentiviral expression systems and in BmN cells by transfecting mimics. Furthermore, BmCPV‐miR‐1 mimics could up‐regulate the expression level of BmIAP gene in midgut and fat body in the silkworm. In the midgut of BmCPV‐infected larvae, BmCPV‐miR‐1 mimics could be further up‐regulated and inhibitors could lower the virus‐mediated expression of BmIAP gene. With the viral genomic RNA segments S1 and S10 as indicators, BmCPV‐miR‐1 mimics could up‐regulate and inhibitors down‐regulate their replication in the infected silkworm. These results implied that BmCPV‐miR‐1 could inhibit cell apoptosis in the infected silkworm through up‐regulating BmIAP expression, providing the virus with a better cell circumstance for its replication.  相似文献   
117.
A recombinant DNA, encoding the chimeric protein of the signal sequence for bifidobacterial α-amylase mature pediocin PA-1, was introduced into Bifidobacterium longum MG1. Biologically active pediocin PA-1 was successfully secreted from the strain and showed bactericidal activity against Listeria monocytogenes and the same molecular mass as native pediocin PA-1.  相似文献   
118.
The endothelial cells that form capillaries in the brain are highly specialized, with tight junctions that minimize paracellular transport and an array of broad-spectrum efflux pumps that make drug delivery to the brain extremely challenging. One of the major limitations in blood-brain barrier research and the development of drugs to treat central nervous system diseases is the lack of appropriate cell lines. Recent reports indicate that the derivation of human brain microvascular endothelial cells (hBMECs) from human induced pluripotent stem cells (iPSCs) may provide a solution to this problem. Here we demonstrate the derivation of hBMECs extended to two new human iPSC lines: BC1 and GFP-labeled BC1. These hBMECs highly express adherens and tight junction proteins VE-cadherin, ZO-1, occludin, and claudin-5. The addition of retinoic acid upregulates VE-cadherin expression, and results in a significant increase in transendothelial electrical resistance to physiological values. The permeabilities of tacrine, rhodamine 123, and Lucifer yellow are similar to values obtained for MDCK cells. The efflux ratio for rhodamine 123 across hBMECs is in the range 2–4 indicating polarization of efflux transporters. Using the rod assay to assess cell organization in small vessels and capillaries, we show that hBMECs resist elongation with decreasing diameter but show progressive axial alignment. The derivation of hBMECs with a blood-brain barrier phenotype from the BC1 cell line highlights that the protocol is robust. The expression of GFP in hBMECs derived from the BC1-GFP cell line provides an important new resource for BBB research.  相似文献   
119.
The nutritional function of taurine   总被引:1,自引:0,他引:1  
  相似文献   
120.
A 14 kDa polypeptide in rat ileal cytosol has been identified as the major intestinal cytosolic bile acid-binding protein (I-BABP) by photoaffinity labeling with the radiolabeled 7,7-azo derivative of taurocholate (7,7-azo-TC). To further characterize I-BABP, the protein was purified by lysylglycocholate Sepharose 4B affinity and DE-52 anion-exchange chromatography. The purified I-BABP contained a single 14 kDa band on SDS-PAGE. The 14 kDa protein showed a 26-fold increase in binding affinity for [3H]7,7-azo-TC compared to cytosolic protein. Immunoblotting of protein fractions separated by affinity chromatography showed that neither liver fatty acid binding protein (L-FABP) nor intestinal fatty acid binding protein (I-FABP) bind to the affinity column and that the 14 kDa protein which bound to the column and was subsequently eluted with detergent did not cross-react with anti-L-FABP or anti-I-FABP. The 14 kDa protein labeled with [3H]7,7-azo-TC was radioimmunoprecipitated from cytosol by rabbit antiserum raised against purified I-BABP. I-BABP was shown to have a blocked N-terminus; however, its mixed internal sequence generated from cyanogen bromide-cleaved protein and amino acid composition indicated that it was related to (although clearly distinct from) both I-FABP and L-FABP. These studies have isolated a 14 kDa bile acid-binding protein from rat ileal cytosol which is immunologically and biochemically distinct from I-FABP and L-FABP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号