首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251638篇
  免费   20703篇
  国内免费   20823篇
  2024年   386篇
  2023年   2585篇
  2022年   5805篇
  2021年   10954篇
  2020年   7553篇
  2019年   9501篇
  2018年   9332篇
  2017年   7033篇
  2016年   9887篇
  2015年   14475篇
  2014年   17218篇
  2013年   18337篇
  2012年   22410篇
  2011年   20678篇
  2010年   13105篇
  2009年   11647篇
  2008年   13913篇
  2007年   12633篇
  2006年   11202篇
  2005年   9264篇
  2004年   7992篇
  2003年   7260篇
  2002年   6224篇
  2001年   5267篇
  2000年   4885篇
  1999年   4715篇
  1998年   2715篇
  1997年   2720篇
  1996年   2536篇
  1995年   2268篇
  1994年   2225篇
  1993年   1700篇
  1992年   2375篇
  1991年   1883篇
  1990年   1488篇
  1989年   1378篇
  1988年   1112篇
  1987年   957篇
  1986年   858篇
  1985年   848篇
  1984年   526篇
  1983年   476篇
  1982年   351篇
  1981年   244篇
  1980年   218篇
  1979年   260篇
  1978年   166篇
  1974年   180篇
  1973年   153篇
  1972年   161篇
排序方式: 共有10000条查询结果,搜索用时 457 毫秒
1.
The yeast Saccharomyces cerevisiae possesses two distinct glycyl-tRNA synthetase (GlyRS) genes: GRS1 and GRS2. GRS1 is dually functional, encoding both cytoplasmic and mitochondrial activities, while GRS2 is dysfunctional and not required for growth. The protein products of these two genes, GlyRS1 and GlyRS2, are much alike but are distinguished by an insertion peptide of GlyRS1, which is absent from GlyRS2 and other eukaryotic homologues. We show that deletion or mutation of the insertion peptide modestly impaired the enzyme''s catalytic efficiency in vitro (with a 2- to 3-fold increase in Km and a 5- to 8-fold decrease in kcat). Consistently, GRS2 can be conveniently converted to a functional gene via codon optimization, and the insertion peptide is dispensable for protein stability and the rescue activity of GRS1 at 30°C in vivo. A phylogenetic analysis further showed that GRS1 and GRS2 are paralogues that arose from a gene duplication event relatively recently, with GRS1 being the predecessor. These results indicate that GlyRS2 is an active enzyme essentially resembling the insertion peptide-deleted form of GlyRS1. Our study suggests that the insertion peptide represents a novel auxiliary domain, which facilitates both productive docking and catalysis of cognate tRNAs.  相似文献   
2.
3.
Synaptogenesis has been extensively studied along with dendritic spine development in glutamatergic pyramidal neurons, however synapse development in cortical interneurons, which are largely aspiny, is comparatively less well understood. Dact1, one of 3 paralogous Dact (Dapper/Frodo) family members in mammals, is a scaffold protein implicated in both the Wnt/β-catenin and the Wnt/Planar Cell Polarity pathways. We show here that Dact1 is expressed in immature cortical interneurons. Although Dact1 is first expressed in interneuron precursors during proliferative and migratory stages, constitutive Dact1 mutant mice have no major defects in numbers or migration of these neurons. However, cultured cortical interneurons derived from these mice have reduced numbers of excitatory synapses on their dendrites. We selectively eliminated Dact1 from mouse cortical interneurons using a conditional knock-out strategy with a Dlx-I12b enhancer-Cre allele, and thereby demonstrate a cell-autonomous role for Dact1 during postsynaptic development. Confirming this cell-autonomous role, we show that synapse numbers in Dact1 deficient cortical interneurons are rescued by virally-mediated re-expression of Dact1 specifically targeted to these cells. Synapse numbers in these neurons are also rescued by similarly targeted expression of the Dact1 binding partner Dishevelled-1, and partially rescued by expression of Disrupted in Schizophrenia-1, a synaptic protein genetically implicated in susceptibility to several major mental illnesses. In sum, our results support a novel cell-autonomous postsynaptic role for Dact1, in cooperation with Dishevelled-1 and possibly Disrupted in Schizophrenia-1, in the formation of synapses on cortical interneuron dendrites.  相似文献   
4.
5.
6.
We evaluated the cytotoxic and DNA cross-linking (CL) ability of four second generation platinum coordination complexes (TNO-6, JM-89, JM-8 and JM-9) delivered alone or in combination with 1-beta-D-arabinofuranosyl cytosine (ara-C) to human colon cancer cells (LoVo). Cell survival varied markedly as a function of the particular substitution moiety. JM-8 and JM-9 were virtually ineffective, even at concentrations as high as 50 micrograms/ml. At that concentration cis-diamminedichloroplatinum(II) (cis-DDP) killed greater than 99.99% of the cells. JM-82 was slightly more active while TNO-6 was the only derivative with appreciably higher cytotoxic activity due to an abrogation of the shoulder region of the type C survival curve. The highest CL effect was observed for cis-DDP followed closely by TNO-6. Very little CL effects were demonstrated for the other three analogs JM-82, JM-8 and JM-9 when measured 6 h after treatment. The combination of cis-DDP and ara-C augmented 10-fold the cytotoxic activity of cis-DDP alone, an effect accompanied by an almost 2-fold increase in CL; every other analog failed to interact in a potentiating manner (either cytotoxicity, or CL at 6 h) with the antimetabolite. Thus, it appears clear that the associated moieties of the Pt coordination complex play a fundamental role in reducing the interaction of the analogs with DNA (as reflected by the decreased CL and cytotoxic effects produced by each agent alone) and in totally preventing their interaction with ara-C to yield a potentiating lethal effect.  相似文献   
7.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
8.
FAB1/PIKfyve是介导PI(3,5)P2 (磷脂酰肌醇3,5-二磷酸)生物合成的磷酸肌醇激酶。在动物和酵母(Saccharomyces cerevisiae)中, PI(3,5)P2参与调控胞内膜运输, 但在植物中的研究较少。该文通过分析拟南芥(Arabidopsis thaliana) FAB1的T-DNA插入突变体的表型解析PI(3,5)P2的生物学功能。拟南芥FAB1基因家族包含FAB1AFAB1BFAB1CFAB1D四个基因。研究发现, fab1a/b呈现雄配子体致死的表型。利用遗传杂交获得fab1b/c/d三突变体, 发现FAB1BFAB1CFAB1D功能缺失导致根毛相比野生型变短, 经FAB1特异性抑制剂YM201636处理后的野生型中也观察到相似的短根毛表型。此外, fab1b/c/d三突变体中DR5转录水平降低。同时, 外源施加生长素类似物2,4-D和NAA能部分恢复fab1b/c/d植株短根毛的表型, 但fab1b/c/d突变体对生长素转运抑制剂(1-NOA和TIBA)的敏感性与野生型相似。此外, FAB1B/C/D功能缺失使根毛中ROS的含量减少且影响肌动蛋白的表达。上述结果表明, FAB1B/C/D通过调控生长素分布、ROS含量和肌动蛋白的表达影响拟南芥根毛伸长。  相似文献   
9.
10.
The major active protein phosphatase present in a rabbit skeletal muscle extract is associated with the glycogen particle and migrates in sucrose density gradient centrifugation as a Mr = 70,000 protein and contains modulator activity. Addition of extra modulator protein causes a time- and concentration-dependent conversion of the enzyme to an inactive FA-ATP, Mg-dependent form. The intrinsic modulator in the active phosphatase is destroyed by limited proteolysis without an appreciable change in the phosphatase activity. The proteolyzed active enzyme has a lower molecular weight (Mr = 40,000) and it reassociates with the modulator producing a FA-ATP, Mg-dependent enzyme form (Mr = 60,000). The modulator protein is used stoichiometrically in the activation of the ATP, Mg-dependent phosphatase. This is in agreement with the presence of one unit of modulator activity per unit of native spontaneously active phosphatase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号