首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146372篇
  免费   4626篇
  国内免费   4570篇
  2024年   91篇
  2023年   625篇
  2022年   1484篇
  2021年   2907篇
  2020年   1877篇
  2019年   2349篇
  2018年   13684篇
  2017年   11854篇
  2016年   9529篇
  2015年   3994篇
  2014年   4248篇
  2013年   4697篇
  2012年   9196篇
  2011年   16962篇
  2010年   14492篇
  2009年   10388篇
  2008年   12498篇
  2007年   13707篇
  2006年   2583篇
  2005年   2455篇
  2004年   2551篇
  2003年   2440篇
  2002年   1990篇
  2001年   1266篇
  2000年   1033篇
  1999年   930篇
  1998年   528篇
  1997年   517篇
  1996年   453篇
  1995年   424篇
  1994年   415篇
  1993年   362篇
  1992年   425篇
  1991年   374篇
  1990年   306篇
  1989年   264篇
  1988年   200篇
  1987年   164篇
  1986年   130篇
  1985年   129篇
  1984年   89篇
  1983年   89篇
  1982年   56篇
  1981年   22篇
  1979年   30篇
  1977年   19篇
  1975年   19篇
  1972年   261篇
  1971年   280篇
  1962年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
During orthodontic tooth movement (OTM), periodontal ligament cells (PDLCs) receive the mechanical stimuli and transform it into myofibroblasts (Mfbs). Indeed, previous studies have demonstrated that mechanical stimuli can promote the expression of Mfb marker α-smooth muscle actin (α-SMA) in PDLCs. Transforming growth factor β1 (TGF-β1), as the target gene of yes-associated protein (YAP), has been proven to be involved in this process. Here, we sought to assess the role of YAP in Mfbs differentiation from PDLCs. The time-course expression of YAP and α-SMA was manifested in OTM model in vivo as well as under tensional stimuli in vitro. Inhibition of RhoA/Rho-associated kinase (ROCK) pathway using Y27632 significantly reduced tension-induced Mfb differentiation and YAP expression. Moreover, overexpression of YAP with lentiviral transfection in PDLCs rescued the repression effect of Mfb differentiation induced by Y27632. These data together suggest a crucial role of YAP in regulating tension-induced Mfb differentiation from PDLC interacted with RhoA/ROCK pathway.  相似文献   
992.
993.
994.
The genus Asparagopsis is a prolific source of halogenated metabolites. Due to its commercial applications, it has been intensively cultivated in southern Portugal. In the present study, we assess if the internal levels of the major halogenated metabolites (bromoform and dibromoacetic acid) in Asparagopsis taxiformis can be increased with hydrogen peroxide (H2O2) addition. Previous studies with red algae showed that the production/release of bromoform can be enhanced by exogenously supplying H2O2. However, no study has assessed if H2O2 supply enhances the content of secondary metabolites within the biomass. This detail is important as the objective of the proposed research is to enhance the content of these valuable metabolites in the produced biomass. Both the activity of the haloperoxidase enzyme and the metabolite content were assessed on short-term and long-term incubation periods to H2O2. To determine the susceptibility of A. taxiformis photosynthetic performance to the imposed oxidative stress, the in vivo fluorescence of photosystem II was monitored. A. taxiformis was shown to be physiologically vulnerable to H2O2, given the observed decrease of the maximum quantum yield of photosynthesis (F v/F m). Contrary to what was expected, the presence of H2O2 inhibited the activity of the iodoperoxidase enzyme. Nevertheless, the extracted halogenated metabolites were higher over the first hours of exposure to H2O2, decreasing after 48 h. These results are probably related to the prosthetic group of the halogenated enzyme in A. taxiformis and the long-term oxidative stress damage of H2O2 exposure. Considering the objective of the proposed research, addition of H2O2 to the cultures, prior (3 h) to biomass harvesting, increases the metabolite content.  相似文献   
995.
We recently demonstrated that the anionic detergent sodium dodecyl sulfate (SDS) specifically interacts with the anesthetic binding site in horse spleen apoferritin, a soluble protein which models anesthetic binding sites in receptors. This raises the possibility of other detergents similarly interacting with and occluding such sites from anesthetics, thereby preventing the proper identification of novel anesthetic binding sites. n-Dodecyl β-D-maltoside (DDM) is a non-ionic detergent commonly used during protein-anesthetic studies because of its mild and non-denaturing properties. In this study, we demonstrate that SDS and DDM occupy anesthetic binding sites in the model proteins human serum albumin (HSA) and horse spleen apoferritin and thereby inhibit the binding of the general anesthetics propofol and isoflurane. DDM specifically interacts with HSA (Kd?=?40?μM) with a lower affinity than SDS (Kd?=?2?μM). DDM exerts all these effects while not perturbing the native structures of either model protein. Computational calculations corroborated the experimental results by demonstrating that the binding sites for DDM and both anesthetics on the model proteins overlapped. Collectively, our results indicate that DDM and SDS specifically interact with anesthetic binding sites and may thus prevent the identification of novel anesthetic sites. Special precaution should be taken when undertaking and interpreting results from protein-anesthetic investigations utilizing detergents like SDS and DDM.  相似文献   
996.
Glutathione peroxidase 4 (GPX4) has been confirmed to inhibit ferroptosis in cancer cells, however, whether GPX4 serves as an oncogene is not clear. In this study, the expression of GPX4 and its influence to survival of patients with cancer were analyzed via public databases. Furthermore, the epigenetic regulation of GPX4 and the relation between GPX4 and chemoresistance of different anticancer drugs was also detected. Most importantly, cytological assays were performed to investigate the function of GPX4 in cancer cells. The results showed that GPX4 was higher expressed in cancer tissues than normal and was negatively associated with prognosis of patients. Furthermore, at upstream of GPX4 there was low DNA methylation sites and enhanced level of H3K4me3 and H3K27ac, indicating that high level of GPX4 in cancer may resulted from epigenetic regulation. Moreover, GPX4 was positively related to chemoresistance of anticancer drugs L-685458, lapatinib, palbociclib, and topotecan. In addition, GPX4 may potentially be involved in translation of protein, mitochondrial respiratory chain complex I assembly, electron transport oxidative phosphorylation, nonalcoholic fatty liver disease, and metabolic pathways. Finally, we detected that GPX4 inhibited ferroptosis in cancer cells, the inhibition of GPX4 via RSL3 could enhance the anticancer effect of cisplatin in vitro and in vivo. In conclusion, GPX4 acts as an oncogene and inhibits ferroptosis in cancer cells, the anticancer effect of cisplatin can be enhanced by GPX4 inhibition.  相似文献   
997.
Food restriction (FR) is hypothesized to decrease body fat content of an animal and thus prevent obesity. However, the response of energy budget to a continuous (CFR) or discontinuous FR (DFR) remains inconsistent. In the present study, effects of CFR or DFR and refeeding on energy budget and behavior were examined in male Swiss mice. CFR significantly decreased the energy expenditure associated with basal metabolic rate (BMR) and activity behavior, but not sufficiently to compensate for energy deficit and thus resulted in lower body mass and fat content. DFR mice had a significantly higher food intake on ad libitum days and showed increases in BMR and activity after 4 weeks’ DFR, which might resulted in lower body mass and less body fat than controls. After being refed ad libitum, both CFR and DFR mice had similar body mass, BMR, and behavioral patterns to controls but had 95% and 75% higher fat content. This suggested that not only CFR but also DFR would be a significant factor in the process of obesity for animals that were refed ad libitum. It also indicated that food restriction interrupted many times by periods of ad libitum feeding had the same long-term effects like continuous underfeeding.  相似文献   
998.
999.
Research has revealed that most chlorophyllous explants/plants in vitro have the ability to grow photoautotrophically (without sugar in the culture medium), and that the low or negative net photosynthetic rate of plants in vitro is not due to poor photosynthetic ability, but to the low CO2 concentration in the air-tight culture vessel during the photoperiod. Moreover, numerous studies have been conducted on improving the in vitro environment and investigating its effects on growth and development of cultures/plantlets on nearly 50 species since the concept of photoautotrophic micropropagation was developed more than two decades ago. These studies indicate that the photoautotrophic growth in vitro of many plant species can be significantly promoted by increasing the CO2 concentration and light intensity in the vessel, by decreasing the relative humidity in the vessel, and by using a fibrous or porous supporting material with high air porosity instead of gelling agents such as agar. This paper reviews the development and characteristics of photoautotrophic micropropagation systems and the effects of environmental conditions on the growth and development of the plantlets. The commercial applications and the perspective of photoautotrophic micropropagation systems are discussed.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号