首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92797篇
  免费   6750篇
  国内免费   6447篇
  105994篇
  2024年   202篇
  2023年   1261篇
  2022年   2952篇
  2021年   4882篇
  2020年   3204篇
  2019年   4027篇
  2018年   3974篇
  2017年   2873篇
  2016年   4065篇
  2015年   5854篇
  2014年   6913篇
  2013年   7271篇
  2012年   8527篇
  2011年   7760篇
  2010年   4514篇
  2009年   4212篇
  2008年   4797篇
  2007年   4163篇
  2006年   3551篇
  2005年   2831篇
  2004年   2317篇
  2003年   2108篇
  2002年   1704篇
  2001年   1472篇
  2000年   1344篇
  1999年   1408篇
  1998年   821篇
  1997年   895篇
  1996年   815篇
  1995年   778篇
  1994年   674篇
  1993年   570篇
  1992年   682篇
  1991年   535篇
  1990年   455篇
  1989年   332篇
  1988年   278篇
  1987年   219篇
  1986年   185篇
  1985年   210篇
  1984年   125篇
  1983年   118篇
  1982年   54篇
  1981年   23篇
  1980年   20篇
  1979年   18篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
Castration-resistant progression of prostate cancer after androgen deprivation therapies remains the most critical challenge in the clinical management of prostate cancer. Resurgent androgen receptor (AR) activity is an established driver of castration-resistant progression, and upregulation of the full-length AR (AR-FL) and constitutively-active AR splice variants (AR-Vs) has been implicated to contribute to the resurgent AR activity. We reported previously that ginsenoside 20(S)-protopanaxadiol-aglycone (PPD) can reduce the abundance of both AR-FL and AR-Vs. In the present study, we further showed that the effect of PPD on AR expression and target genes was independent of androgen. PPD treatment resulted in a suppression of ligand-independent AR transactivation. Moreover, PPD delayed castration-resistant regrowth of LNCaP xenograft tumors after androgen deprivation and inhibited the growth of castration-resistant 22Rv1 xenograft tumors with endogenous expression of AR-FL and AR-Vs. This was accompanied by a decline in serum prostate-specific antigen levels as well as a decrease in AR levels and mitoses in the tumors. Notably, the 22Rv1 xenograft tumors were resistant to growth inhibition by the next-generation anti-androgen enzalutamide. The present study represents the first to show the preclinical efficacy of PPD in inhibiting castration-resistant progression and growth of prostate cancer. The findings provide a rationale for further developing PPD or its analogues for prostate cancer therapy.  相似文献   
142.
The silkworm Bombyx mori L., representing an important economic insect and one of the best models for studying insect immunity, possesses an efficient and sophisticated innate immune system against invasive microorganisms. The innate immune system basically includes humoural immunity and cellular immunity. The humoural immunity, which functions via molecules including humoural factors, lysozymes, phenoloxidase, hemolin, lectins and, in particular, antimicrobial peptides, plays a central role in eliminating the invading pathogens. The cellular immunity is primarily carried out and mediated by plasmatocytes and granular cells of haemocytes in the haemolymph, usually followed by melanization. Additionally, apoptosis, a primary viral defence for insects lacking adaptive immunity, comprises an important part of the silkworm immune system. Currently, there is still the lack of a comprehensive and systematic understanding of the molecular mechanisms of silkworm immunity. We review the latest research progress on silkworm immune mechanisms, including phenoloxidase‐dependent melanization and apoptosis, which is conducive to improving our understanding of the silkworm immune mechanism, clarifying the relationship of various immune mechanisms, and also providing a theoretical basis and reference for the future research of insect immunity.  相似文献   
143.
Syk is a 72-kDa protein-tyrosine kinase that regulates signaling through multiple cell surface receptors including those for antigens, immunoglobulins and proteins of the extracellular matrix. As part of its function, Syk binds a variety of downstream effectors through interactions that are often mediated by motifs that recognize phosphotyrosines. In a search for novel Syk-interacting proteins by yeast two-hybrid analysis, we identified tensin2 as a Syk-binding protein. Syk interacts with a fragment of tensin2 located near the C-terminus that contains SH2 and PTB domains. In epithelial cells, tensin2 localizes both to focal adhesions and to large cytoplasmic puncta. It is within these punctuate structures that Syk and tensin2 are co-localized. The clustering of Syk within these structures leads to its phosphorylation on tyrosine.  相似文献   
144.

Background

Several case-control studies have been performed to examine the association of genetic variants in lysyl oxidase (LOX) with keratoconus. However, the results remained inconclusive and great heterogeneity might exist across populations.

Method

A comprehensive literature search for studies that published up to June 25, 2015 was performed. Summary odds ratios (OR) and 95% confidence intervals (CI) of each single nucleotide polymorphism (SNP) were estimated with fixed effects model when I 2<50% in the test for heterogeneity or random effects model when I 2>50%. Publication bias was evaluated using funnel plots and Egger’s test.

Results

A total of four studies including 1,467 keratoconus cases and 4,490 controls were involved in this meta-analysis. SNPs rs2956540 and rs10519694 showed significant association with keratoconus, with ORs of 0.71 (95% CI: 0.63–0.80, P = 1.43E-08) and 0.77 (95% CI: 0.61–0.97, P = 0.026), respectively. In contrast, our study lacked sufficient evidences to support the association of rs1800449/rs2288393 with keratoconus across populations.

Conclusion

This meta-analysis suggested that two LOX variants, rs2956540 and rs10519694, may affect individual susceptibility to keratoconus, while distinct heterogeneity existed within this locus. Larger-scale and multi-ethnic genetic studies on keratoconus are required to further validate the results.  相似文献   
145.
146.
147.
Elucidating the relationship between sequence and conformation is essential for the understanding of functions of proteins. While sharing 88 % sequence identity and differing by only seven residues, GA88 and GB88 have completely different structures and serve as ideal systems for investigating the relationship between sequence and function. Benefiting from the continuous advancement of the computational ability of modern computers, molecular dynamics (MD) simulation is now playing an increasingly important role in the study of proteins. However, the reliability of MD simulations is limited by the accuracy of the force fields and solvent model approximations. In this work, several AMBER force fields (AMBER03, AMBER99SB, AMBER12SB, AMBER14SB, AMBER96) and solvent models (TIP3P, IGB5, IGB7, IGB8) have been employed in the simulations of GA88 and GB88. The statistical results from 19 simulations show that GA88 and GB88 both adopt more compact structures than the native structures. GB88 is more stable than GA88 regardless of the force fields and solvent models utilized. Most of the simulations overestimated the salt bridge interaction. The combination of AMBER14SB force field and IGB8 solvent model shows the best overall performance in the simulations of both GA88 and GB88. AMBER03 and AMBER12SB also yield reasonable results but only in the TIP3P explicit solvent model.  相似文献   
148.
Postmenopausal Osteoporosis (PMOP) is oestrogen withdrawal characterized of much production and activation by osteoclast in the elderly female. Cytisine is a quinolizidine alkaloid that comes from seeds or other plants of the Leguminosae (Fabaceae) family. Cytisine has been shown several potential pharmacological functions. However, its effects on PMOP remain unknown. This study designed to explore whether Cytisine is able to suppress RANKL‐induced osteoclastogenesis and prevent the bone loss induced by oestrogen deficiency in ovariectomized (OVX) mice. In this study, we investigated the effect of Cytisine on RAW 264.7 cells and bone marrow monocytes (BMMs) derived osteoclast culture system in vitro and observed the effect of Cytisine on ovariectomized (OVX) mice model to imitate postmenopausal osteoporosis in vivo. We found that Cytisine inhibited F‐actin ring formation and tartrate‐resistant acid phosphatase (TRAP) staining in dose‐dependent ways, as well as bone resorption by pit formation assays. For molecular mechanism, Cytisine suppressed RANK‐related trigger RANKL by phosphorylation JNK/ERK/p38‐MAPK, IκBα/p65‐NF‐κB, and PI3K/AKT axis and significantly inhibited these signalling pathways. However, the suppression of PI3K‐AKT‐NFATc1 axis was rescued by AKT activator SC79. Meanwhile, Cytisine inhibited RANKL‐induced RANK‐TRAF6 association and RANKL‐related gene and protein markers such as NFATc1, Cathepsin K, MMP‐9 and TRAP. Our study indicated that Cytisine could suppress bone loss in OVX mouse through inhibited osteoclastogenesis. All data provide the evidence that Cytisine may be a promising agent in the treatment of osteoclast‐related diseases such as osteoporosis.  相似文献   
149.
MATE (multidrug and toxic compound extrusion) transporter proteins mediate metabolite transport in plants and multidrug resistance in bacteria and mammals. MATE transporter NorM from Vibrio cholerae is an antiporter that is driven by Na+ gradient to extrude the substrates. To understand the molecular mechanism of Na+‐substrate exchange, molecular dynamics simulation was performed to study conformational changes of both wild‐type and mutant NorM with and without cation bindings. Our results show that NorM is able to bind two Na+ ions simultaneously, one to each of the carboxylic groups of E255 and D371 in the binding pocket. Furthermore, this di‐Na+ binding state is likely more efficient for conformational changes of NorM_VC toward the inward‐facing conformation than single‐Na+ binding state. The observation of two Na+ binding sites of NorM_VC is consistent with the previous study that two sites for ion binding (denoted as Na1/Na2 sites) are found in the transporter LeuT and BetP, another two secondary transporters. Taken together, our findings shed light on the structure rearrangements of NorM on Na+ binding and enrich our knowledge of the transport mechanism of secondary transporters. Proteins 2014; 82:240–249. © 2013 Wiley Periodicals, Inc.  相似文献   
150.
Chronic heart failure, secondary to left ventricular hypertrophy or myocardial infarction, is a condition with increasing morbidity and mortality. Although the mechanisms underlying the development and progression of this condition remain a subject of intense interest, there is now growing evidence that redox-sensitive pathways play an important role. This article focuses on the involvement of reactive oxygen species derived from a family of superoxide-generating enzymes, termed NADPH oxidases (NOXs), in the pathophysiology of ventricular hypertrophy, the accompanying interstitial fibrosis and subsequent heart failure. In particular, the apparent ability of the different NADPH oxidase isoforms to define the response of a cell to a range of physiological and pathophysiological stimuli is reviewed. If confirmed, these data would suggest that independently targeting different members of the NOX family may hold the potential for therapeutic intervention in the treatment of cardiac disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号