首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   6篇
  国内免费   4篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   6篇
  2013年   4篇
  2012年   11篇
  2011年   4篇
  2010年   4篇
  2009年   7篇
  2008年   5篇
  2007年   3篇
  2006年   10篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  1986年   1篇
排序方式: 共有87条查询结果,搜索用时 31 毫秒
51.
The serine/threonine kinase B-Raf is the second most frequently occurring human oncogene after Ras. Mutations of B-Raf occur with the highest incidences in melanoma, and the most common mutant, V600E, renders B-Raf constitutively active. The sodium proton exchanger isoform 1 (NHE1) is a ubiquitously expressed plasma membrane protein responsible for regulating intracellular pH, cell volume, cell migration, and proliferation. A screen of protein kinases that bind to NHE1 revealed that B-Raf bound to the cytosolic regulatory tail of NHE1. Immunoprecipitation of NHE1 from HeLa and HEK cells confirmed the association of B-Raf with NHE1 in vivo. The expressed and purified C-terminal 182 amino acids of the NHE1 protein were also shown to associate with B-Raf protein in vitro. Because treatment with the kinase inhibitor sorafenib decreased NHE1 activity in HeLa and HEK cells, we examined the role of B-Raf in regulating NHE1 in malignant melanoma cells. Melanoma cells with the B-Raf(V600E) mutation demonstrated increased resting intracellular pH that was dependent on elevated NHE1 activity. NHE1 activity after an acute acid load was also elevated in these cell lines. Moreover, inhibition of B-Raf activity by either sorafenib, PLX4720, or siRNA reduction of B-Raf levels abolished ERK phosphorylation and decreased NHE1 activity. These results demonstrate that B-Raf associates with and stimulates NHE1 activity and that B-Raf(V600E) also increases NHE1 activity that raises intracellular pH.  相似文献   
52.
Mycobacterial tuberculosis (Mtb) is able to preserve its intrabacterial pH (pHIB) near neutrality in the acidic phagosomes of immunologically activated macrophages and to cause lethal pathology in immunocompetent mice. In contrast, when its ability to maintain pHIB homeostasis is genetically compromised, Mtb dies in acidic phagosomes and is attenuated in the mouse. Compounds that phenocopy the genetic disruption of Mtb’s pHIB homeostasis could serve as starting points for drug development in their own right or through identification of their targets. A previously reported screen of a natural product library identified a phloroglucinol, agrimophol, that lowered Mtb’s pHIB and killed Mtb at an acidic extrabacterial pH. Inability to identify agrimophol-resistant mutants of Mtb suggested that the compound may have more than one target. Given that polyphenolic compounds may undergo covalent reactions, we attempted an affinity-based method for target identification. The structure-activity relationship of synthetically tractable polyhydroxy diphenylmethane analogs with equivalent bioactivity informed the design of a bioactive agrimophol alkyne. After click-chemistry reaction with azido-biotin and capture on streptavidin, the biotinylated agrimophol analog pulled down the Mtb protein Rv3852, a predicted membrane protein that binds DNA in vitro. A ligand-protein interaction between agrimophol and recombinant Rv3852 was confirmed by isothermal calorimetry (ITC) and led to disruption of Rv3852’s DNA binding function. However, genetic deletion of rv3852 in Mtb did not phenocopy the effect of agrimophol on Mtb, perhaps because of redundancy of its function.  相似文献   
53.
Molecular and Cellular Biochemistry - Insulin stimulates de novo lipid synthesis in the liver and in cultured hepatocytes via its ability to activate sterol regulatory element-binding protein 1c...  相似文献   
54.
模拟生态系统中噬藻体裂解蓝藻宿主的生态学效应   总被引:1,自引:0,他引:1  
实验采用模拟生态系统,研究了噬藻体裂解蓝藻宿主后营养物质循环变化的过程,以及细菌和漂浮植物对这个过程的影响。结果表明噬藻体裂解宿主所释放的营养元素在细菌的作用下迅速进入新的循环并形成新的水华,而加入浮萍则可以有效吸收水体营养,防止新的水华发生。因此推测单纯地利用包括噬藻体在内的微生物裂解藻类的方法,并非治理水华的有效方法,但如果能够结合漂浮植物等其它治理手段,则有可能同时实现水华的控制和水质的改善。  相似文献   
55.
Transforming growth factor-beta-activated kinase 1 (TAK1) is a member of the mitogen-activated protein (MAP) kinase family and is an upstream signaling molecule of nuclear factor-kappaB (NF-kappaB). Given that NF-kappaB regulates keratinocyte differentiation and apoptosis, TAK1 may be essential for epidermal functions. To test this, we generated keratinocyte-specific TAK1-deficient mice from Map3k7(flox/flox) mice and K5-Cre mice. The keratinocyte-specific TAK1-deficient mice were macroscopically indistinguishable from their littermates until postnatal day 2 or 3, when the skin started to roughen and wrinkle. This phenotype progressed, and the mice died by postnatal day 7. Histological analysis showed thickening of the epidermis with foci of keratinocyte apoptosis and intra-epidermal micro-abscesses. Immunohistochemical analysis showed that the suprabasal keratinocytes of the TAK1-deficient epidermis expressed keratin 5 and keratin 14, which are normally confined to the basal layer. The expression of keratin 1, keratin 10, and loricrin, which are markers for the suprabasal and late phase differentiation of the epidermis, was absent from the TAK1-deficient epidermis. Furthermore, the TAK1-deficient epidermis expressed keratin 16 and had an increased number of Ki67-positive cells. These data indicate that TAK1 deficiency in keratinocytes results in abnormal differentiation, increased proliferation, and apoptosis in the epidermis. However, the keratinocytes from the TAK1-deficient epidermis induced keratin 1 in suspension culture, indicating that the TAK1-deficient keratinocytes retain the ability to differentiate. Moreover, the removal of TAK1 from cultured keratinocytes of Map3k7(flox/flox) mice resulted in apoptosis, indicating that TAK1 is essential for preventing apoptosis. In conclusion, TAK1 is essential in the regulation of keratinocyte growth, differentiation, and apoptosis.  相似文献   
56.
The mammalian Na(+)/H(+) exchanger isoform 1 (NHE1) is a ubiquitously expressed plasma membrane protein. It regulates intracellular pH by removing a single intracellular H(+) in exchange for one extracellular Na(+). The membrane domain of NHE1 comprises the 500 N-terminal amino acids and is made of 12 transmembrane segments. The extracellular loops of the transmembrane segments are thought to be involved in cation coordination and inhibitor sensitivity. We have characterized the structure and function of amino acids 278-291 representing extracellular loop 4. When mutated to Cys, residues F277, F280, N282 and E284 of EL4 were sensitive to mutation and reaction with MTSET inhibiting NHE1 activity. In addition they were found to be accessible to extracellular applied MTSET. A peptide of the amino acids of EL4 was mostly unstructured suggesting that it does not provide a rigid structured link between TM VII and TM VIII. Our results suggest that EL4 makes an extension upward from TM VII to make up part of the mouth of the NHE1 protein and is involved in cation selectivity or coordination. EL4 provides a flexible link to TM VIII which may either allow movement of TM VII or allow TM VIII to not be adjacent to TM VII.  相似文献   
57.
Recent molecular studies indicate that aerobic glycolysis plays an important role in tumorigenesis and is a valid target for cancer therapy. Although 2-deoxyglucose (2-DG) is well characterized as a glycolytic inhibitor, we recently discovered that it activates a prosurvival oncoprotein, AKT, through PI3K. In this study, we discovered that 2-DG treatments disrupted the binding between insulin-like growth factor 1 (IGF-1) and IGF-binding protein 3 (IGFBP3) so that the free form of IGF-1 could be released from the IGF-1·IGFBP3 complex to activate IGF-1 receptor (IGF1R) signaling. Because IGF1R signaling is involved, PI3K/AKT constitutes only one of the prosurvival pathways that are activated by 2-DG treatment; we validated that MEK-ERK signaling was also induced in an IGF1R-dependent manner in some cancer cell lines. Furthermore, our phospho-specific antibody microarray analysis indicated that 2-DG up-regulated the phosphorylation of 64 sites within various signaling pathways in H460 cells. Chemical inhibition of IGF1R reduced 57 of these up-regulations. These data suggest that 2-DG-induced activation of many survival pathways can be jointly attenuated through IGF1R inhibition. Our in vitro analysis demonstrated that treatment with a combination of subtoxic doses of 2-DG and the IGF1R inhibitor II reduced cancer cell proliferation 90% and promoted significant apoptosis.Cancer cells display high rates of aerobic glycolysis in comparison with their nontransformed counterparts (i.e. the Warburg effect (1)). Whether increased aerobic glycolysis drives tumor formation or merely represents a byproduct of oncogenic transformation has been a subject of controversy. Two recent studies demonstrated that the Warburg effect can be reversed in some cancer cells by either the depletion of lactate dehydrogenenase A or switching pyruvate kinase expression from M2 to M1 isoform (2, 3). Interestingly, the reversal of the Warburg effect correlates with a reduction in the ability of the isogenic cancer cells to form tumors in nude mouse xenografts. Viewed in combination, these observations appeared to indicate that tumor cells preferentially use glucose for purposes other than oxidative phosphorylation and that aerobic glycolysis is a valid target for cancer therapeutics.Targeting glycolysis for cancer treatment has been explored previously as a therapeutic approach (4, 5). Of all the glycolysis inhibitors that were evaluated, 2-deoxyglucose (2-DG)3 is the one that has been best characterized in animal model studies and human clinical trials (68). It is converted by hexokinase to phosphorylated 2-DG, which becomes trapped inside the cell and inhibits hexokinase (9). As a direct consequence of 2-DG treatment, intracellular ATP is depleted (10, 11), which ultimately suppresses cell proliferation in vitro (12, 13). Nonetheless, the implementation of 2-DG as an anticancer agent in vivo has been a disappointment. Whereas 2-DG suppresses cell growth in vitro, studies using xenografts indicate that 2-DG treatment, when provided as a single agent, does not inhibit tumor growth (6).Because 2-DG is a small molecule, we suspected that it activates other signaling pathways and decided to evaluate its off-target effects. Our initial findings indicated that 2-DG activates AKT function through phosphatidylinositol 3-kinase (PI3K) and is independent of glycolysis or mTOR inhibition. Thus, the inhibitory effect on growth produced by 2-DG-mediated glycolysis inhibition may be partial offset by the fact there is also 2-DG-induced AKT activation (14). In the current study, we used a phospho-specific antibody array to identify IGF1R as the upstream receptor tyrosine kinase that is responsible for the activation of AKT signaling. Using recombinant IGF-1 and IGFBP3 proteins, we discovered that the inhibition of IGF-1 by IGFBP3 is disrupted in the presence of 2-DG. As 2-DG treatment activates IGF-1 signaling, we evaluated other prosurvival signaling pathways such as ERK signaling, which was also activated by 2-DG treatment in some cancer cell lines. Lastly, we tested to see whether an inhibitor of IGF1R would interfere with the prosurvival pathways and increase apoptosis if given in combination with 2-DG.  相似文献   
58.
59.
The Na(+)/H(+) exchanger isoform 1 (NHE1) is an integral membrane protein that regulates intracellular pH by extruding an intracellular H(+) in exchange for one extracellular Na(+). The human NHE1 isoform is involved in heart disease and cell growth and proliferation. Although details of NHE1 regulation and transport are being revealed, there is little information available on the structure of the intact protein. In this report, we demonstrate overexpression, purification, and characterization of the human NHE1 (hNHE1) protein in Saccharomyces cerevisiae. Overproduction of the His-tagged protein followed by purification via nickel-nitrilotriacetic acid-agarose chromatography yielded 0.2 mg of pure protein/liter of cell culture. Reconstitution of hNHE1 in proteoliposomes demonstrated that the protein was active and responsive to an NHE1-specific inhibitor. Circular dichroism spectroscopy of purified hNHE1 revealed that the protein contains 41% alpha-helix, 23% beta-sheet, and 36% random coil. Size exclusion chromatography indicated that the protein-detergent micelle was in excess of 200 kDa, consistent with an hNHE1 dimer. Electron microscopy and single particle reconstruction of negatively stained hNHE1 confirmed that the protein was a dimer, with a compact globular domain assigned to the transmembrane region and an apical ridge assigned to the cytoplasmic domain. The transmembrane domain of the hNHE1 reconstruction was clearly dimeric, where each monomer had a size and shape consistent with the predicted 12 membrane-spanning segments for hNHE1.  相似文献   
60.
Recent studies have suggested the existence of innate host surveillance systems for the detection of bacteria in the cytosol of mammalian cells. The molecular details of how bacteria are recognized in the cytosol, however, remain unclear. Here we examined the fate of Salmonella typhimurium, a gram-negative bacterial pathogen that can infect a variety of hosts, in the cytosol of mammalian cells. These bacteria typically occupy a membrane bound compartment, the Salmonella-containing vacuole (SCV), in host cells. We show that some wild-type bacteria escape invasion vacuoles and are released into the cytosol. Subsequently, polyubiquitinated proteins accumulate on the bacterial surface, a response that was witnessed in several cell types. In macrophages but not epithelial cells, the proteasome was observed to undergo a dramatic subcellular relocalization and become associated with the surface of bacteria in the cytosol. Proteasome inhibition promoted replication of S. typhimurium in the cytosol of both cell types, in part through destabilization of the SCV. Surprisingly, the cytosol-adapted pathogen Listeria monocytogenes avoided recognition by the ubiquitin system by using actin-based motility. Our findings indicate that the ubiquitin system plays a major role in the recognition of bacterial pathogens in the cytosol of mammalian cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号