首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   6篇
  国内免费   4篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   6篇
  2013年   4篇
  2012年   11篇
  2011年   4篇
  2010年   4篇
  2009年   7篇
  2008年   5篇
  2007年   3篇
  2006年   10篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  1986年   1篇
排序方式: 共有87条查询结果,搜索用时 31 毫秒
11.
提问技能是课堂教学中进行师生互动的重要教学手段。通过介绍单元问题的教学策略以帮助教师在使用提问技能时有效促进学生的思维发展。单元问题是围绕一定目标、按照一定逻辑结构排列的问题串,主要由基础问题和核心问题组成。通过实例提出对单元问题设计的建议,以期有更多的教师掌握和运用这一策略。  相似文献   
12.
The use of lymphatic microvessel density (LVD) and pro-lymphangiogenic mediators as prognostic factors for survival in breast cancer remains controversial. We searched the electronic databases PubMed and EMBASE without language restrictions for relevant literature to aggregate the survival results. To be eligible, every study had to include the assessment of the LVD or the expression of vascular endothelial growth factor (VEGF)-C or -D in patients with breast cancer and provide a survival comparison, including disease-free survival (DFS) or overall survival (OS), according to the LVD, VEGF-C or VEGF-D status. Across all studies, 56.64?% of patients were considered to have a VEGF-C-positive tumor, and 65.54?% of patients had VEGF-D-positive tumors. High LVD had an unfavorable impact on DFS, with a pooled hazard ratio (HR) of 2.222 (95?% CI 1.579–3.126) and an OS with a HR of 2.493 (95?% CI 1.183–5.25). According to the different lymphatic makers, the subgroup HR in the D2-40 studies was 2.431 (95?%?CI 1.622–3.644) for DFS and 4.085 (95?% CI 1.896–8.799) for OS. VEGF-C overexpression, as assessed by immunochemistry, was a prognostic factor for decreased DFS (HR 2.164; 95?% CI 1.256–3.729) and for decreased OS (HR 2.613; 95?% CI 1.637–4.170). VEGF-D overexpression was a significant although weak prognostic factor for DFS only when assessed by immunochemistry, with a HR of 2.108 (95?% CI 1.014–4.384). Our meta-analysis demonstrated that LVD, VEGF-C and VEGF-D could predict poor prognosis in patients with breast cancer. However, standardization of the assessment of LVD and for the expression of lymphangiogenesis factors is needed.  相似文献   
13.
Mitochondrial metabolic capacity and DNA replication have both been shown to affect oocyte quality, but it is unclear which one is more critical. In this study, immature oocytes were treated with FCCP or ddC to independently inhibit the respective mitochondrial metabolic capacity or DNA replication of oocytes during in vitro maturation. To differentiate their roles, we evaluated various parameters related to oocyte maturation (germinal vesicle break down and nuclear maturation), quality (spindle formation, chromosome alignment, and mitochondrial distribution pattern), fertilization capability, and subsequent embryo developmental competence (blastocyst formation and cell number of blastocyst). Inhibition of mitochondrial metabolic capacity with FCCP resulted in a reduced percent of oocytes with nuclear maturation; normal spindle formation and chromosome alignment; evenly distributed mitochondria; and an ability to form blastocysts. Inhibition of mtDNA replication with ddC has no detectable effect on oocyte maturation and mitochondrial distribution, although high-dose ddC increased the percent of oocytes showing abnormal spindle formation and chromosome alignment. ddC did, however, reduce blastocyst formation significantly. Neither FCCP nor ddC exposure had an effect on the rate of fertilization. These findings suggest that the effects associated with lower mitochondrial DNA copy number do not coincide with the effects seen with reduced mitochondrial metabolic activity in oocytes. Inhibiting mitochondrial metabolic activity during oocyte maturation has a negative impact on oocyte maturation and subsequent embryo developmental competence. A reduction in mitochondrial DNA copy number, on the other hand, mainly affects embryonic development potential, but has little effect on oocyte maturation and in vitro fertilization.  相似文献   
14.
Antibiotics are typically more effective against replicating rather than nonreplicating bacteria. However, a major need in global health is to eradicate persistent or nonreplicating subpopulations of bacteria such as Mycobacterium tuberculosis (Mtb). Hence, identifying chemical inhibitors that selectively kill bacteria that are not replicating is of practical importance. To address this, we screened for inhibitors of dihydrolipoamide acyltransferase (DlaT), an enzyme required by Mtb to cause tuberculosis in guinea pigs and used by the bacterium to resist nitric oxide-derived reactive nitrogen intermediates, a stress encountered in the host. Chemical screening for inhibitors of Mtb DlaT identified select rhodanines as compounds that almost exclusively kill nonreplicating mycobacteria in synergy with products of host immunity, such as nitric oxide and hypoxia, and are effective on bacteria within macrophages, a cellular reservoir for latent Mtb. Compounds that kill nonreplicating pathogens in cooperation with host immunity could complement the conventional chemotherapy of infectious disease.  相似文献   
15.
16.
17.
Li X  Liu Y  Alvarez BV  Casey JR  Fliegel L 《Biochemistry》2006,45(7):2414-2424
Carbonic anhydrase II (CAII) binds to and regulates transport by the NHE1 isoform of the mammalian Na(+)/H(+) exchanger. We localized and characterized the CAII binding region on the C-terminal tail of the Na(+)/H(+) exchanger. CAII did not bind to acidic sequences in NHE1 that were similar to the CAII binding site of bicarbonate transporters. Instead, by expressing a variety of fusion proteins of the C-terminal region of the Na(+)/H(+) exchanger, we demonstrated that CAII binds to the penultimate group of 13 amino acids of the cytoplasmic tail. Within this region, site-specific mutagenesis demonstrated that amino acids S796 and D797 form part of a novel CAII binding site. Phosphorylation of the C-terminal 26 amino acids by heart cell extracts did not alter CAII binding to this region, but phosphorylation greatly increased CAII binding to a protein containing the C-terminal 182 amino acids of NHE1. This suggested that an upstream region of the cytoplasmic tail acts as an inhibitor of CAII binding to the penultimate group of 13 amino acids. The results demonstrate that a novel phosphorylation-regulated CAII binding site exists in distal amino acids of the NHE1 tail.  相似文献   
18.
Methionine sulphoxide reductases (Msr) reduce methionine sulphoxide to methionine and protect bacteria against reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI). Many organisms express both MsrA, active against methionine-( S )-sulphoxide, and MsrB, active against methionine-( R )-sulphoxide. Mycobacterium tuberculosis (Mtb) expresses MsrA, which protects Δ msrA-Escherichia coli from ROI and RNI. However, the function of MsrA in Mtb has not been defined, and it is unknown whether Mtb expresses MsrB. We identified MsrB as the protein encoded by Rv2674 in Mtb and confirmed the distinct stereospecificities of recombinant Mtb MsrA and MsrB. We generated strains of Mtb deficient in MsrA, MsrB or both and complemented the mutants. Lysates of singly deficient strains displayed half as much Msr activity as wild type against N -acetyl methionine sulphoxide. However, in contrast to other bacteria, single mutants were no more vulnerable than wild type to killing by ROI/RNI. Only Mtb lacking both MsrA and MsrB was more readily killed by nitrite or hypochlorite. Thus, MsrA and MsrB contribute to the enzymatic defences of Mtb against ROI and RNI.  相似文献   
19.
The Na+/H+ exchanger isoform 1 is a ubiquitously expressed integral membrane protein that regulates intracellular pH in mammals by extruding an intracellular H+ in exchange for one extracellular Na+. We characterized structural and functional aspects of the critical transmembrane (TM) segment XI (residues 449-470) by using cysteine scanning mutagenesis and high resolution NMR. Each residue of TM XI was mutated to cysteine in the background of the cysteine-less protein and the sensitivity to water-soluble sulfhydryl reactive compounds MTSET ((2-(trimethylammonium) ethyl)methanethiosulfonate) and MTSES ((2-sulfonatoethyl) methanethiosulfonate) was determined for those residues with at least moderate activity remaining. Of the residues tested, only proteins with mutations L457C, I461C, and L465C were inhibited by MTSET. The activity of the L465C mutant was almost completely eliminated, whereas that of the L457C and I461C mutants was partially affected. The structure of a peptide representing TM XI (residues Lys447-Lys472) was determined using high resolution NMR spectroscopy in dodecylphosphocholine micelles. The structure consisted of helical regions between Asp447-Tyr454 and Phe460-Lys471 at the N and C termini of the peptide, respectively, connected by a region with poorly defined, irregular structure consisting of residues Gly455-Gly459. TM XI of NHE1 had a structural similarity to TM XI of the Escherichia coli Na+/H+ exchanger NhaA. The results suggest that TM XI is a discontinuous helix, with residue Leu465 contributing to the pore.The mammalian Na+/H+ exchanger isoform 1 (NHE1)4 is a ubiquitous integral membrane protein that regulates intracellular pH. It mediates removal of a single intracellular proton in exchange for an extracellular sodium ion (1). NHE1 has many functions aside from protection of cells from intracellular acidification (2). It promotes cell growth and differentiation (3), regulates sodium fluxes and cell volume after challenge by osmotic shrinkage (4), and has been demonstrated to be involved in modulating cell motility (5). In addition its activity is important in invasiveness of neoplastic breast cancer cells (6). NHE1 also plays critical roles in heart disease. It has a contributing role in heart hypertrophy and in the damage that occurs during ischemia and reperfusion. Inhibition of NHE1 with Na+/H+ exchanger inhibitors protects the myocardium during various disease states (7-10).NHE1 is composed of two general regions, an N-terminal membrane domain of ∼500 amino acids and a C-terminal regulatory domain of ∼315 amino acids (1, 8). The membrane domain is responsible for ion movement and an analysis of topology by cysteine scanning accessibility suggested it has 3 membrane-associated segments and 12 integral transmembrane segments (11) (Fig. 1A). The mechanism of transport of the membrane domain is of great interest both from a scientific viewpoint and in the design of improved NHE1 inhibitors that may be necessary for clinical use (1). In this regard, we have recently characterized the functionally important residues and the structure of both TM IV and TM VII. Prolines 167 and 168 of TM IV were critical to NHE1 function (12) and cysteine-scanning mutagenesis was used to show that Phe161 is a pore lining residue critical to transport. Analysis of the structure of TM IV showed that TM IV is composed of one region of β-turns, an extended middle region including Pro167-Pro168, and a helical region (13). TM VII was much more typical of a transmembrane helix although it was interrupted with a break in the helix at the functionally critical residues Gly261-Glu262 (14).Open in a separate windowFIGURE 1.Models of the Na+/H+ exchanger. A, simplified topological model of the transmembrane domain of the NHE1 isoform of the Na+/H+ exchanger as described earlier (11). EL, extracellular loop; IL, intracellular loop. B, model of amino acids present in TM XI.Another important TM segment of the Na+/H+ exchanger is TM XI (Fig. 1B). Several different lines of evidence have suggested that it is critical to NHE1 function. A recent study generated chimeras of NHE1 from various species and found that a region including TM XI was important in determining NHE1 inhibitor sensitivity (15). More specifically, mutagenesis of several amino acids of TM XI has shown that it is likely involved in either ion transport or proper targeting to the plasma membrane. Two mutants in TM XI, Y454C and R458C, are retained in the endoplasmic reticulum (16). In addition, mutation of Gly455 and Gly456 in TM XI shift the pHi dependence of the exchanger to the alkaline side, whereas mutation of Arg440 in intracellular loop 5 at the N-terminal end of TM XI shifts the pHi dependence to make it more acidic (17, 18). Also, the structure of the bacterial Na+/H+ exchanger NhaA has been elucidated. Both TM IV and TM XI play a critical role forming an assembly that cross, with each being a helix, an extended polypeptide and a short helix (19). We found that TM IV of NHE1 has a similar structure and function to that of TM IV of NhaA (2, 13), leaving open the possibility that TM XI of NHE1 is also similar in structure and function to TM XI of NhaA.For these reasons, we undertook a systematic examination of the structural and functional aspects of TM XI of the NHE1 isoform of the Na+/H+ exchanger. The sequence of human TM XI of NHE1 is 449QFIIAYGGLRGAIAFSLGYLLD470. In this study we use cysteine scanning mutagenesis and site-specific mutagenesis to identify and characterize critical pore lining residues of the protein. We also use nuclear magnetic resonance (NMR) spectroscopy to characterize the structure of a synthetic peptide representing TM XI in dodecylphosphocholine (DPC) micelles. Evidence has suggested that TM segments of membrane proteins possess all the structural information required to form their higher order structures in their amino acid sequence (20). This has been demonstrated in earlier studies on membrane protein segments such as the cystic fibrosis transmembrane conductance regulator (21), a fungal G-protein-coupled receptor (22), bacteriorhodopsin (23, 24), and rhodopsin (25), where it was shown that isolated TM segments from membrane proteins had structures in good agreement with the segments of the entire protein. Also, the use of DPC micelles has been shown to be an excellent membrane mimetic environment for these studies (26, 27). Our study identifies Leu465 as contributing to the pore of the protein and shows that the structure of TM XI consists of two helices corresponding to Asp447-Tyr454 and Phe460-Lys471 at the N and C termini, respectively, connected by a flexible region at residues 455-459. The structure of TM XI was similar to the x-ray structure of TM XI of NhaA.  相似文献   
20.
Hypoxia plays an important role in the development of solid tumors and is associated with their therapeutic resistance. There exist three major forms of hypoxia: acute, chronic, and intermittent hypoxia. Previous studies have shown that cancer cells could behave in the form of adaptation to hypoxia in tumor growth, which could result in their biological changes and determine their responses to the therapies. To investigate the tumor cells' adaptation to hypoxia, we recreated two models using two lung cancer cell lines in the presence of intermittent hypoxia, which is characterized by changes in oxygen pressure within the disorganized vascular network. We investigated biological behaviors such as cell cycle, proliferation, radiation sensitivity, apoptosis and migration, hypoxia signal pathway in the lung cancer cells treated with chronic intermittent hypoxia, as well as the role of hypoxia inducible factor 1 there, hypoxia‐inducible genes analyzed by real‐time RT‐PCR chip in H446 cells treated with the model. The results indicated the changes of some hypoxia target gene expressions of those induced by hypoxia, some of which were confirmed by real‐time RT‐PCR. The cells mediated by irradiation induced resistance to radiation and apoptosis and increased metastasis in lung cancer cells. It was found that such changes were related to hypoxia inducible factor 1, alpha subunit (HIF‐1α). J. Cell. Biochem. 111: 554–563, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号