首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35578篇
  免费   3272篇
  国内免费   5200篇
  44050篇
  2024年   121篇
  2023年   505篇
  2022年   1173篇
  2021年   1881篇
  2020年   1365篇
  2019年   1743篇
  2018年   1588篇
  2017年   1230篇
  2016年   1663篇
  2015年   2417篇
  2014年   2912篇
  2013年   3009篇
  2012年   3628篇
  2011年   3290篇
  2010年   2110篇
  2009年   1876篇
  2008年   2103篇
  2007年   1889篇
  2006年   1651篇
  2005年   1351篇
  2004年   1105篇
  2003年   1037篇
  2002年   871篇
  2001年   547篇
  2000年   474篇
  1999年   435篇
  1998年   283篇
  1997年   259篇
  1996年   230篇
  1995年   183篇
  1994年   178篇
  1993年   123篇
  1992年   132篇
  1991年   104篇
  1990年   78篇
  1989年   76篇
  1988年   61篇
  1987年   40篇
  1986年   51篇
  1985年   60篇
  1984年   23篇
  1983年   29篇
  1982年   29篇
  1981年   23篇
  1980年   10篇
  1979年   20篇
  1978年   9篇
  1974年   8篇
  1973年   11篇
  1971年   8篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
121.
In recent years, black ginseng, a new type of processed ginseng product, has attracted the attention of scholars globally. Ginsenoside and ginseng polysaccharide, the main active substances of black ginseng, have been shown to carry curative effects for many diseases. This article focuses on the mechanism of their action in anti-inflammatory response, which is mainly divided into three aspects: activation of immune cells to exert immune regulatory response; participation in inflammatory response-related pathways and regulation of the expression level of inflammatory factors; effect on the metabolic activity of intestinal flora. This study identifies active anti-inflammatory components and an action mechanism of black ginseng showing multi-component, multi-target, and multi-channel characteristics, providing ideas and a basis for a follow-up in-depth study of its specific mechanism.  相似文献   
122.

The helix angle configuration of the myocardium is understood to contribute to the heart function, as finite element (FE) modeling of postnatal hearts showed that altered configurations affected cardiac function and biomechanics. However, similar investigations have not been done on the fetal heart. To address this, we performed image-based FE simulations of fetal left ventricles (LV) over a range of helix angle configurations, assuming a linear variation of helix angles from epicardium to endocardium. Results showed that helix angles have substantial influence on peak myofiber stress, cardiac stroke work, myocardial deformational burden, and spatial variability of myocardial strain. A good match between LV myocardial strains from FE simulations to those measured from 4D fetal echo images could only be obtained if the transmural variation of helix angle was generally between 110 and 130°, suggesting that this was the physiological range. Experimentally discovered helix angle configurations from the literature were found to produce high peak myofiber stress, high cardiac stroke work, and a low myocardial deformational burden, but did not coincide with configurations that would optimize these characteristics. This may suggest that the fetal development of myocyte orientations depends concurrently on several factors rather than a single factor. We further found that the shape, rather than the size of the LV, determined the manner at which helix angles influenced these characteristics, as this influence changed significantly when the LV shape was varied, but not when a heart was scaled from fetal to adult size while retaining the same shape. This may suggest that biomechanical optimality would be affected during diseases that altered the geometric shape of the LV.

  相似文献   
123.
Lin  Xiaobin  Wang  Shuyi  Sun  Min  Zhang  Chunxiao  Wei  Chen  Yang  Chaogang  Dou  Rongzhang  Liu  Qing  Xiong  Bin 《Journal of hematology & oncology》2023,16(1):1-5
Background

Hepatocellular carcinoma (HCC) generally arises from a background of liver cirrhosis (LC). Patients with cirrhosis and suspected HCC are recommended to undergo serum biomarker tests and imaging diagnostic evaluation. However, the performance of routine diagnostic methods in detecting early HCC remains unpromising.

Methods

Here, we conducted a large-scale, multicenter study of 1675 participants including 490 healthy controls, 577 LC patients, and 608 HCC patients from nine clinical centers across nine provinces of China, profiled gene mutation signatures of cell-free DNA (cfDNA) using Circulating Single-Molecule Amplification and Resequencing Technology (cSMART) through detecting 931 mutation sites across 21 genes.

Results

An integrated diagnostic model called “Combined method” was developed by combining three mutation sites and three serum biomarkers. Combined method outperformed AFP in the diagnosis of HCC, especially early HCC, with sensitivities of 81.25% for all stages and 66.67% for early HCC, respectively. Importantly, the integrated model exhibited high accuracy in differentiating AFP-negative, AFP-L3-negative, and PIVKA-II-negative HCCs from LCs.

  相似文献   
124.
The obligate biotrophic fungus Puccinia striiformis f. sp. tritici (Pst) employs virulence effectors to disturb host immunity and causes devastating stripe rust disease. However, our understanding of how Pst effectors regulate host defense responses remains limited. In this study, we determined that the Pst effector Hasp98, which is highly expressed in Pst haustoria, inhibits plant immune responses triggered by flg22 or nonpathogenic bacteria. Overexpression of Hasp98 in wheat (Triticum aestivum) suppressed avirulent Pst-triggered immunity, leading to decreased H2O2 accumulation and promoting P. striiformis infection, whereas stable silencing of Hasp98 impaired P. striiformis pathogenicity. Hasp98 interacts with the wheat mitogen-activated protein kinase TaMAPK4, a positive regulator of plant resistance to stripe rust. The conserved TEY motif of TaMAPK4 is important for its kinase activity, which is required for the resistance function. We demonstrate that Hasp98 inhibits the kinase activity of TaMAPK4 and that the stable silencing of TaMAPK4 compromises wheat resistance against P. striiformis. These results suggest that Hasp98 acts as a virulence effector to interfere with the MAPK signaling pathway in wheat, thereby promoting P. striiformis infection.  相似文献   
125.
Phosphorus is a major nutrient vital for plant growth and development, with a substantial amount of cellular phosphorus being used for the biosynthesis of membrane phospholipids. Here, we report that NON-SPECIFIC PHOSPHOLIPASE C4 (NPC4) in rapeseed (Brassica napus) releases phosphate from phospholipids to promote growth and seed yield, as plants with altered NPC4 levels showed significant changes in seed production under different phosphate conditions. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated knockout of BnaNPC4 led to elevated accumulation of phospholipids and decreased growth, whereas overexpression (OE) of BnaNPC4 resulted in lower phospholipid contents and increased plant growth and seed production. We demonstrate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in vitro, and plants with altered BnaNPC4 function displayed changes in their sphingolipid and glycerolipid contents in roots, with a greater change in glycerolipids than sphingolipids in leaves, particularly under phosphate deficiency conditions. In addition, BnaNPC4-OE plants led to the upregulation of genes involved in lipid metabolism, phosphate release, and phosphate transport and an increase in free inorganic phosphate in leaves. These results indicate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in rapeseed to enhance phosphate release from membrane phospholipids and promote growth and seed production.  相似文献   
126.
We examined the effects of endothelin-1 (ET-1) on pulmonary hemodynamic and transvascular fluid filtration and the conversion of big endothelin-1 (big ET-1), a precursor of ET-1, in isolated perfused rabbit lungs at constant vascular and airway pressures. Furthermore we examined whether ET-1 contributes to cyclooxygenase metabolism. The perfusate flow decreased significantly after bolus administration of 1 or 0.1 nmol of ET-1. Lung weight did not increase throughout the experimental period. Big ET-1- (1 nmol) induced decrease in the flow was slow in developing, although the maximum response was comparable to that induced by the same dose of ET-1. The concentration of bit ET-1 in the perfusate progressively decreased, while that of ET-1 increased in a time-dependent manner. Phosphoramidon, an inhibitor of metalloproteinase, suppressed the pressor effect of big ET-1 (P less than 0.01) and the increase in the concentration of ET-1 in the perfusate (P less than 0.05). The present findings provide the first evidence suggesting that the potent vasocontractile effect of big ET-1 in pulmonary circulation can be attributed to the production of ET-1 by the conversion from big ET-1 in the vascular bed. ET-1-induced perfusate flow changes were not affected by indomethacin, and the concentration of 6-ketoprostaglandin F1 alpha, a metabolite of prostacyclin, did not increase after ET-1 administration.  相似文献   
127.
Combined gas chromatography-mass spectrometry (GCMS) was used to identify and quantify specific cytokinins from Porphyra perforate J. Ag. and Sargassum muticum (Yendo) Fensh. The level of isopentenyladenosine was estimated to be 0.6 μ·kg?1 fresh weight in Porphyra and 0.9 μ·kg?1 fresh weight in Sargassum. The level of cis-zeatin riboside was estimated to be 0.2 μ·kg?1 fresh weight in Sargassum. This is the first definitive identification of a cytokinin from a red alga, and the second report from a brown alga.  相似文献   
128.
Suppression subtractive hybridization was carried out to enrich gene fragments over-expressed in rice leaves by subtraction to rice roots, from which two identical cDNA fragments were identified to encode putative phosphoenolpyruvate carboxylase. Then the corresponding full-length cDNA (Osppc) is isolated by RT-PCR and sequenced, which indicates an open reading frame of 2895bp is contained. Its deduced protein is encoded in 10 exons and shows high similarity to many other plant PEPCs. Comparing with maize and bacterial PEPCs, it is revealed that OSPPC shares many conserved domains and active sites that responsible for the structure, activity and regulation of this enzyme. Phylogenetic analysis demonstrates that OSPPC is grouped with C3 form PEPCs of wheat, maize and sorghum, which is consistent with the classification of rice. And a putative promoter element is predicted with DOF binding box, CAAT box and TATA box in the 5'-flanking sequence of Osppc gene. Moreover, Quantitative RT-PCR analyses are performed in hybrid rice and its parents, which show that Osppc is specifically expressed in leaf including leaf vein and sheath.  相似文献   
129.
130.
A series of plasmids were constructed to examine the effects of p19 and orf1‐orf2 genes from Bacillus thuringiensis on Cyt1Aa synthesis and inclusion formation. The plasmids expressed the cyt1Aa gene along with either p19 or orf1‐orf2, or each of them coordinatively with p20 in the acrystalliferous strain of B. thuringiensis subsp. israelensis 4Q7. No effect on the expression of Cyt1Aa protein was found when P19 or Orf1‐Orf2 co‐expressed with Cyt1Aa. However, when including p20 gene, the constructs with p19 or orf1‐orf2 gene produced lower yield of Cyt1Aa proteins than without p19 or orf1‐orf2 gene. Electron microscopy observation and bioassay showed that P19 and Orf1‐Orf2 have no influence on the crystal size and toxicity of Cyt1Aa protein. It is presumed that P19 and Orf1‐Orf2 might have negative effects on Cyt1Aa synthesis in B. thuringiensis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号