首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4820篇
  免费   445篇
  国内免费   349篇
  5614篇
  2024年   21篇
  2023年   86篇
  2022年   161篇
  2021年   257篇
  2020年   172篇
  2019年   251篇
  2018年   219篇
  2017年   135篇
  2016年   241篇
  2015年   350篇
  2014年   344篇
  2013年   359篇
  2012年   432篇
  2011年   365篇
  2010年   259篇
  2009年   230篇
  2008年   255篇
  2007年   230篇
  2006年   195篇
  2005年   138篇
  2004年   126篇
  2003年   127篇
  2002年   97篇
  2001年   87篇
  2000年   57篇
  1999年   73篇
  1998年   42篇
  1997年   36篇
  1996年   40篇
  1995年   28篇
  1994年   27篇
  1993年   31篇
  1992年   31篇
  1991年   27篇
  1990年   23篇
  1989年   11篇
  1988年   16篇
  1987年   7篇
  1986年   7篇
  1985年   11篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1976年   1篇
排序方式: 共有5614条查询结果,搜索用时 15 毫秒
251.
Plant stature is one important factor that affects the productivity of peach orchards. However, little is known about the molecular mechanism(s) underlying the dwarf phenotype of peach tree. Here, we report a dwarfing mechanism in the peach cv. FenHuaShouXingTao (FHSXT). The dwarf phenotype of ‘FHSXT’ was caused by shorter cell length compared to the standard cv. QiuMiHong (QMH). ‘FHSXT’ contained higher endogenous GA levels than did ‘QMH’ and did not response to exogenous GA treatment (internode elongation). These results indicated that ‘FHSXT’ is a GA‐insensitive dwarf mutant. A dwarf phenotype‐related single nucleotide mutation in the gibberellic acid receptor GID1 was identified in ‘FHSXT’ (GID1cS191F), which was also cosegregated with dwarf phenotype in 30 tested cultivars. GID1cS191F was unable to interact with the growth‐repressor DELLA1 even in the presence of GA. ‘FHSXT’ accumulated a higher level of DELLA1, the degradation of which is normally induced by its interaction with GID1. The DELLA1 protein level was almost undetectable in ‘QMH’, but not reduced in ‘FHSXT’ after GA3 treatment. Our results suggested that a nonsynonymous single nucleotide mutation in GID1c disrupts its interaction with DELLA1 resulting in a GA‐insensitive dwarf phenotype in peach.  相似文献   
252.
The reduction of nuclear fast red (NFR) stain by sodium tetrahydroboron was catalyzed in the presence of silver ions (Ag+). The fluorescence properties of reduced NFR differed from that of NFR. The product showed fluorescence emission at 480 nm with excitation at 369 nm. Furthermore, the fluorescence intensity of the mixture increased strongly in the presence of Ag+ and Britton–Robinson buffer at pH 4.78. There was a good linear relationship between increased fluorescence intensity (ΔI) and Ag+ concentration in the range 5.0 × 10?9 to 5.0 × 10?8 M. The correlation coefficient was 0.998, and the detection limit (3σ/k) was 1.5 × 10?9 M. The colour of the reaction system changed with variation in Ag+ concentration over a wide range. Based on the colour change, a visual semiquantitative detection method for recognition and sensing of Ag+ was developed for the range 1.0 × 10?8 to 5.0 × 10?4 M, with an indicator that was visible to the naked eye. Therefore, a sensitive, simple method for determination of Ag+ was developed. Optimum conditions for Ag+ detection, the effect of other ions and the analytical application of Ag+ detection of synthesized sample were investigated.  相似文献   
253.
Due to unprecedented features including high‐energy density, low cost, and light weight, lithium–sulfur batteries have been proposed as a promising successor of lithium‐ion batteries. However, unresolved detrimental low Li‐ion transport rates in traditional carbon materials lead to large energy barrier in high sulfur loading batteries, which prevents the lithium–sulfur batteries from commercialization. In this report, to overcome the challenge of increasing both the cycling stability and areal capacity, a metallic oxide composite (NiCo2O4@rGO) is designed to enable a robust separator with low energy barrier for Li‐ion diffusion and simultaneously provide abundant active sites for the catalytic conversion of the polar polysulfides. With a high sulfur‐loading of 6 mg cm?2 and low sulfur/electrolyte ratio of 10, the assembled batteries deliver an initial capacity of 5.04 mAh cm?2 as well as capacity retention of 92% after 400 cycles. The metallic oxide composite NiCo2O4@rGO/PP separator with low Li‐ion diffusion energy barrier opens up the opportunity for lithium–sulfur batteries to achieve long‐cycle, cost‐effective operation toward wide applications in electric vehicles and electronic devices.  相似文献   
254.
255.
Significant progress has achieved for developing lithium–sulfur (Li–S) batteries with high specific capacities and excellent cyclic stability. However, some critical issues emerge when attempts are made to raise the areal sulfur loading and increase the operation current density to meet the standards for various industrial applications. In this work, polyethylenimine‐functionalized carbon dots (PEI‐CDots) are designed and prepared for enhancing performance of the Li–S batteries with high sulfur loadings and operation under high current density situations. Strong chemical binding effects towards polysulfides and fast ion transport property are achieved in the PEI‐CDots‐modified cathodes. At a high current density of 8 mA cm?2, the PEI‐CDots‐modified Li–S battery delivers a reversible areal capacity of 3.3 mAh cm?2 with only 0.07% capacity decay per cycle over 400 cycles at 6.6 mg sulfur loading. Detailed analysis, involving electrochemical impedance spectroscopy, cyclic voltammetry, and density functional theory calculations, is done for the elucidation of the underlying enhancement mechanism by the PEI‐CDots. The strongly localized sulfur species and the promoted Li+ ion conductivity at the cathode–electrolyte interface are revealed to enable high‐performance Li–S batteries with high sulfur loading and large operational current.  相似文献   
256.
The oxygen evolution reaction (OER) has aroused extensive interest from materials scientists in the past decade by virtue of its great significance in the energy storage/conversion systems such as water splitting, rechargeable metal–air batteries, carbon dioxide (CO2) reduction, and fuel cells. Among all the materials capable of catalyzing OER, layered double hydroxides (LDHs) stand out as one of the most effective electrocatalysts owing to their compositional and structural flexibility as well as the tenability and the simplicity of their preparation process. For this reason, numerous efforts have been dedicated to adjusting the structure, forming the well‐defined morphology, and developing the preparation methods of LDHs to promote their electrocatalytic performance. In this article, recent advances in the rational design of LDH‐based electrocatalysts toward OER are summarized. Specifically, various tactics for the synthetic methods, as well as structural and composition regulations of LDHs, are further highlighted, followed by a discussion on the influential factors for OER performance. Finally, the remaining challenges to investigate and improve the catalyzing ability of LDH electrocatalysts are stated to indicate possible future development of LDHs.  相似文献   
257.
Lithium‐sulfur batteries (LSBs) have been regarded as a competitive candidate for next‐generation electrochemical energy‐storage technologies due to their merits in energy density. The sluggish redox kinetics of the electrochemistry and the high solubility of polysulfides during cycling result in insufficient sulfur utilization, severe polarization, and poor cyclic stability. Herein, sulfiphilic few‐layered MoSe2 nanoflakes decorated rGO (MoSe2@rGO) hybrid has been synthesized through a facile hydrothermal method and for the first time, is used as a conceptually new‐style sulfur host for LSBs. Specifically, MoSe2@rGO not only strongly interacts with polysulfides but also dynamically strengthens polysulfide redox reactions. The polarization problem is effectively alleviated by relying on the sulfiphilic MoSe2. Moreover, MoSe2@rGO is demonstrated to be beneficial for the fast nucleation and uniform deposition of Li2S, contributing to the high discharge capacity and good cyclic stability. A high initial capacity of 1608 mAh g?1 at 0.1 C, a slow decay rate of 0.042% per loop at 0.25 C, and a high reversible capacity of 870 mAh g?1 with areal sulfur loading of 4.2 mg cm?2 at 0.3 C are obtained. The concept of introducing sulfiphilic transition‐metal selenides into the LSBs system can stimulate engineering of novel architectures with enhanced properties for various energy‐storage devices.  相似文献   
258.
As a complicated micro-ecosystem, gut microbes are closely related to metabolic disease, immune disease and tumor (such as constipation. Long-term constipation would cause intestinal mucosal injury, enteritis, ileus, etc., thus inducing intestine cancer). In this research, intestine cancer model group and Codonopsis foetens treatment group were successfully constructed, and the variation of intestinal microbes were analyzed by 16S rRNA sequence. Results showed that there were changes in bacteria abundance of Firmicutes, Bacteroidetes, Proteobacteria, Deferribacteres, Tenericutes, and Actinobacteria, etc. Codonopsis foetens could directly or indirectly affect the growth and metabolism of Deferribacteres by altering the nutritional ingredient and pH value of intestine “medium”, thus affecting the occurrence and development of intestinal microbes.  相似文献   
259.
260.
Mammalian reproductive processes involve spermatogenesis, which occurs in the testis, and fertilization, which takes place in the female genital tract. Fertilization is a successive, multistep, and extremely complicated event that usually includes sperm survival in the uterus, sperm migration through the uterotubal junction (UTJ) and the oviduct, sperm penetration through the cumulus cell layer and the zona pellucida, and sperm–egg fusion. There may be a complex molecular mechanism to ensure that the above processes run smoothly. Previous studies have discovered essential factors for these fertilization steps through in vitro fertilization experiments. However, recent gene disruption approaches in mice have revealed that many of the factors previously described as important for fertilization are largely dispensable in gene‐knockout animals, and some previously unknown factors are emerging. As a result, the molecular mechanisms of fertilization, especially sperm migration from the uterus into the oviduct, have recently been revised by the emergence of genetically modified animals. In this review, we only focus on and update the essential genes for sperm migration through the UTJ and describe recent advances in our knowledge of the basis of mammalian sperm migration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号