首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4821篇
  免费   448篇
  国内免费   345篇
  2024年   21篇
  2023年   86篇
  2022年   161篇
  2021年   257篇
  2020年   172篇
  2019年   251篇
  2018年   219篇
  2017年   135篇
  2016年   241篇
  2015年   350篇
  2014年   344篇
  2013年   359篇
  2012年   432篇
  2011年   365篇
  2010年   259篇
  2009年   230篇
  2008年   255篇
  2007年   230篇
  2006年   195篇
  2005年   138篇
  2004年   126篇
  2003年   127篇
  2002年   97篇
  2001年   87篇
  2000年   57篇
  1999年   73篇
  1998年   42篇
  1997年   36篇
  1996年   40篇
  1995年   28篇
  1994年   27篇
  1993年   31篇
  1992年   31篇
  1991年   27篇
  1990年   23篇
  1989年   11篇
  1988年   16篇
  1987年   7篇
  1986年   7篇
  1985年   11篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1976年   1篇
排序方式: 共有5614条查询结果,搜索用时 15 毫秒
241.
Inorganic–organic hybrid nanoparticles formed by lanthanide-doped nanostructures and organic ligands have been intensively studied, which could greatly increase their photoluminescence performance as a result of the energy transfer process from organic ligands to Ln3+ ions. However, the photoluminescence intensity and excitation spectral width are still quite limited on coordinating with a single type of organic ligand. In this work, Eu3+-doped LaF3 (LaF3:Eu3+) nanoparticles were prepared using a hydrothermal method, and were then hybridized with benzoic acid and thenoyltrifluoroacetone to form the hybrid nanostructures. After that, the hybrid nanostructures were mixed with 2,2′-azobisisobutyronitrile and methyl methacrylate to prepare the composites. The sample obtained by hybridization and composite doping with 5% Eu3+ exhibited the best photoluminescence performance. The excitation peak width and luminescence intensity of the hybrid nanostructures were significantly increased. The excitation spectral width of the inorganic–organic mixed hybrid nanostructures was particularly enhanced, and covered the whole ultraviolet band region of solar light on Earth. The prepared composites exhibited good optical properties.  相似文献   
242.
In the presence of abscisic acid or environmental stress, activated SnRK2s transiently phosphorylate Raptor1B, a regulatory component of the TOR complex, to inhibit plant growth. To examine such transient interactions between a kinase and its substrate, comprehensive genetic or biochemistry evidence is more conclusive than a single negative co-immunoprecipitation test.  相似文献   
243.
244.
Resistance towards imatinib (IM) remains troublesome in treating many chronic myeloid leukemia (CML) patients. Heme oxygenase-1 (HO-1) is a key enzyme of antioxidative metabolism in association with cell resistance to apoptosis. Our previous studies have shown that overexpression of HO-1 resulted in resistance development to IM in CML cells, while the mechanism remains unclear. In the current study, the IM-resistant CML cells K562R indicated upregulation of some of the histone deacetylases (HDACs) compared with K562 cells. Therefore, we herein postulated HO-1 was associated with HDACs. Silencing HO-1 expression in K562R cells inhibited the expression of some HDACs, and the sensitivity to IM was increased. K562 cells transfected with HO-1 resisted IM and underwent obvious some HDACs. These findings related to the inhibitory effects of high HO-1 expression on the reactive oxygen species (ROS) signaling pathway that negatively regulated HDACs. Increased expression of HO-1 activated HDACs by inhibiting ROS production. In summary, HO-1, which is involved in the development of drug resistance in CML cells by regulating the expression of HDACs, is probably a novel target for improving CML therapy.  相似文献   
245.
The aim of this study was to research the mechanism of circMAN2B2 in the development of glioma. In our study, we found that circMAN2B2 has a higher expression in glioma tissues and cells, which was negatively related to the overall survival of glioma patients. The cell counting kit-8 assay, 5-ethynyl-2′-deoxyuridine labeling assay, transwell assay, and the nude mice assay indicated that knockdown of circMAN2B2 inhibited the cell proliferation, invasion, migration and decreased tumor size. In terms of mechanism, knockdown of circMAN2B2 increased the expression of miR-1205. Moreover, circMAN2B2 regulated S100A8 expression by inhibiting miR-1205. We also showed that knockdown of S100A8 inhibited cell proliferation, invasion, and migration. Increasing S100A8 expression rescued the effect of si-circMAN2B2. In conclusion, circMAN2B2 could improve cell proliferation, invasion, and migration of the glioma by inhibiting miR-1205 and promoting the expression of S100A8.  相似文献   
246.
247.
Histone deacetylases (HDACs) are involved in a wide array of biological processes. However, the role of HDAC3 in porcine oocytes remains unclear. In the current study, we examine the effects of HDAC3 inhibition on porcine oocyte maturation using RGFP966, a selective HDAC3 inhibitor. We find that suppression of HDAC3 activity prevents not only the expansion of cumulus cells but also the meiotic progression of oocytes. It is interesting to note that HDAC3 displays a spindle-like distribution pattern as the porcine oocytes enter meiosis. In line with this, confocal microscopy reveals the high frequency of spindle defects and chromosomal congression failure in metaphase oocytes exposed to RGFP966. Moreover, HDAC3 inhibition results in the hyperacetylation of α-tubulin during oocyte meiosis. These findings indicate that HDAC3 activity might control the microtubule stability via the deacetylation of tubulin, which is critical for maintaining the proper spindle assembly, accurate chromosome separation, and orderly meiotic progression during porcine oocyte maturation.  相似文献   
248.
249.
250.
The phenotypic changes of tubular epithelial cell are hallmark features of renal diseases caused by abnormal uric acid levels. We hereby intend to investigate whether PI3K/p-Akt signaling plays a role in uric-acid induced epithelial−mesenchymal transition process. The normal rat kidney cell line (NRK-52E) was used as a proximal tubular cell model in this study. NRK-52E cells were exposed to different concentrations of uric acid, or PI3K inhibitor LY294002, or both, respectively. The effects of uric acid on cell morphology were examined by phase contrast microscopy, while molecular alternations were assessed by western blot analysis and immunofluorescence staining. We found that uric acid induced visible morphological alterations in NRK-52E cells accompanied by increased expression of α-smooth muscle actin and reduced expression of E-cadherin. Moreover, phosphorylation of Akt protein was obviously increased, whereas Akt level remained stable. Furthermore, the above effects were abolished when PI3K/p-Akt pathway was blocked by the PI3K inhibitor. These findings demonstrated that high uric acid could induce phenotypic transition of cultured renal tubular cells, which was probably via activating PI3K/p-Akt signaling pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号