全文获取类型
收费全文 | 9425篇 |
免费 | 735篇 |
国内免费 | 956篇 |
专业分类
11116篇 |
出版年
2024年 | 53篇 |
2023年 | 227篇 |
2022年 | 453篇 |
2021年 | 694篇 |
2020年 | 423篇 |
2019年 | 474篇 |
2018年 | 486篇 |
2017年 | 352篇 |
2016年 | 438篇 |
2015年 | 631篇 |
2014年 | 701篇 |
2013年 | 729篇 |
2012年 | 871篇 |
2011年 | 763篇 |
2010年 | 474篇 |
2009年 | 395篇 |
2008年 | 446篇 |
2007年 | 381篇 |
2006年 | 329篇 |
2005年 | 268篇 |
2004年 | 221篇 |
2003年 | 190篇 |
2002年 | 154篇 |
2001年 | 110篇 |
2000年 | 113篇 |
1999年 | 108篇 |
1998年 | 89篇 |
1997年 | 90篇 |
1996年 | 58篇 |
1995年 | 59篇 |
1994年 | 73篇 |
1993年 | 36篇 |
1992年 | 40篇 |
1991年 | 35篇 |
1990年 | 25篇 |
1989年 | 31篇 |
1988年 | 16篇 |
1987年 | 15篇 |
1986年 | 11篇 |
1985年 | 20篇 |
1984年 | 6篇 |
1983年 | 8篇 |
1982年 | 7篇 |
1981年 | 1篇 |
1980年 | 4篇 |
1979年 | 4篇 |
1978年 | 2篇 |
1975年 | 1篇 |
1950年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Jason Terpolilli Yvette Hill Rui Tian John Howieson Lambert Br?u Lynne Goodwin James Han Konstantinos Liolios Marcel Huntemann Amrita Pati Tanja Woyke Konstantinos Mavromatis Victor Markowitz Natalia Ivanova Nikos Kyrpides Wayne Reeve 《Standards in genomic sciences》2013,9(2):315-324
Ensifer meliloti WSM1022 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago. WSM1022 was isolated in 1987 from a nodule recovered from the roots of the annual Medicago orbicularis growing on the Cyclades Island of Naxos in Greece. WSM1022 is highly effective at fixing nitrogen with M. truncatula and other annual species such as M. tornata and M. littoralis and is also highly effective with the perennial M. sativa (alfalfa or lucerne). In common with other characterized E. meliloti strains, WSM1022 will nodulate but fixes poorly with M. polymorpha and M. sphaerocarpos and does not nodulate M. murex. Here we describe the features of E. meliloti WSM1022, together with genome sequence information and its annotation. The 6,649,661 bp high-quality-draft genome is arranged into 121 scaffolds of 125 contigs containing 6,323 protein-coding genes and 75 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project. 相似文献
72.
Yingwei Qiu Xiaofei Lv Huanhuan Su Guihua Jiang Junzhang Tian Fuzhen Zhuo Lujun Han Xuelin Zhang 《PloS one》2013,8(11)
Background
In the past twenty years, codeine-containing cough syrups (CCS) was recognized as a new type of addictive drugs. However, the exact neurobiologic mechanisms underlying CCS-dependence are still ill-defined. The aims of this study are to identify CCS-related modulations of neural activity during the resting-state in CCS-dependent individuals and to investigate whether these changes of neural activity can be related to duration of CCS use, the first age of CCS use and impulse control deficits in CCS-dependent individuals. We also want to observe the impact of gray matter deficits on these functional results.Methodology/Principal Findings
Thirty CCS-dependent individuals and 30 control subjects participated. Resting-state functional MRI was performed by using gradient-echo echo-planar imaging sequence. Regional homogeneity (ReHo) was calculated by using REST software. Voxel-based analysis of the ReHo maps between controls and CCS-dependent groups was performed using two-sample t tests (p<0.05, corrected for multiple comparisons). The Barratt Impulsiveness Scale 11 (BIS.11) was surveyed to assess participants'' impulsivity trait soon after MR examination. Abnormal clusters revealed by group comparison were extracted and correlated with impulsivity, duration of CCS use, and age of first CCS use. ReHo was diminished in the bilateral medial orbitofrontal cortex (mOFC) and left dorsal striatum in CCS-dependent individuals. There were negative correlations between mean ReHo in the bilateral medial OFC, left dorsal striatum and duration of CCS use, BIS.11 total scores, and the subscale of attentional impulsivity in CCS-dependent individuals. There was a significantly positive correlation between mean ReHo in the left dorsal striatum and age of first CCS use in CCS-dependent individuals. Importantly, these results still remain significant after statistically controlling for the regional gray matter deficits.Conclusion
Resting-state abnormalities in CCS-dependent individuals revealed in the present study may further improve our understanding about the neural substrates of impulse control dysfunction in CCS-dependent individuals. 相似文献73.
74.
Xinmin Lv Yaqiang Sun Pengbo Hao Cankui Zhang Ji Tian Mengmeng Fu Zhen Xu Yi Wang Xinzhong Zhang Xuefeng Xu Ting Wu Zhenhai Han 《Plant physiology》2021,187(3):1587
Long-distance mobile mRNAs play key roles in gene regulatory networks that control plant development and stress tolerance. However, the mechanisms underlying species-specific delivery of mRNA still need to be elucidated. Here, the use of grafts involving highly heterozygous apple (Malus) genotypes allowed us to demonstrate that apple (Malus domestica) oligopeptide transporter3 (MdOPT3) mRNA can be transported over a long distance, from the leaf to the root, to regulate iron uptake; however, the mRNA of Arabidopsis (Arabidopsis thaliana) oligopeptide transporter 3 (AtOPT3), the MdOPT3 homolog from A. thaliana, does not move from shoot to root. Reciprocal heterologous expression of the two types of mRNAs showed that the immobile AtOPT3 became mobile and moved from the shoot to the root in two woody species, Malus and Populus, while the mobile MdOPT3 became immobile in two herbaceous species, A. thaliana and tomato (Solanum lycopersicum). Furthermore, we demonstrated that the different transmissibility of OPT3 in A. thaliana and Malus might be caused by divergence in RNA-binding proteins between herbaceous and woody plants. This study provides insights into mechanisms underlying differences in mRNA mobility and validates the important physiological functions associated with this process.The long-distance movement of OPT3 is selective between herbaceous and woody plants as shown using Malus and Arabidopsis thaliana plants. 相似文献
75.
Xie M Zhang L He CS Xu F Liu JL Hu ZH Zhao LP Tian Y 《Journal of cellular biochemistry》2012,113(5):1501-1513
Despite an initial response to EGFR tyrosine kinase inhibitors (EGFR-TKI) in EGFR mutant lung cancer, most patients eventually become resistant and result in treatment failure. Recent studies have shown that epithelial to mesenchymal transition (EMT) is associated with drug resistance and cancer cell metastasis. Strong multiple gene signature data indicate that EMT acts as a determinant of insensitivity to EGFR-TKI. However, the exact mechanism for the acquisition of the EMT phenotype in EGFR-TKI resistant lung cancer cells remains unclear. In the present study, we showed that the expression of Notch-1 was highly upregulated in gefitinib-resistant PC9/AB2 lung cancer cells. Notch-1 receptor intracellular domain (N1IC), the activated form of the Notch-1 receptor, promoted the EMT phenotype in PC9 cells. Silencing of Notch-1 using siRNA reversed the EMT phenotype and restored sensitivity to gefitinib in PC9/AB2 cells. Moreover, Notch-1 reduction was also involved in inhibition of anoikis as well as colony-formation activity of PC9/AB2 cells. Taken together, these results provide strong molecular evidence that gefitinib-acquired resistance in lung cancer cells undergoing EMT occurs through activation of Notch-1 signaling. Thus, inhibition of Notch-1 can be a novel strategy for the reversal of the EMT phenotype thereby potentially increasing therapeutic drug sensitivity to lung cancer cells. 相似文献
76.
Shenzhong Tian Tangyuan Ning Hongxiang Zhao Bingwen Wang Na Li Huifang Han Zengjia Li Shuyun Chi 《PloS one》2012,7(12)
The objective of this study was to quantify soil methane (CH4) and nitrous oxide (N2O) emissions when converting from minimum and no-tillage systems to subsoiling (tilled soil to a depth of 40 cm to 45 cm) in the North China Plain. The relationships between CH4 and N2O flux and soil temperature, moisture, NH4
+-N, organic carbon (SOC) and pH were investigated over 18 months using a split-plot design. The soil absorption of CH4 appeared to increase after conversion from no-tillage (NT) to subsoiling (NTS), from harrow tillage (HT) to subsoiling (HTS) and from rotary tillage (RT) to subsoiling (RTS). N2O emissions also increased after conversion. Furthermore, after conversion to subsoiling, the combined global warming potential (GWP) of CH4 and N2O increased by approximately 0.05 kg CO2 ha−1 for HTS, 0.02 kg CO2 ha−1 for RTS and 0.23 kg CO2 ha−1 for NTS. Soil temperature, moisture, SOC, NH4
+-N and pH also changed after conversion to subsoiling. These changes were correlated with CH4 uptake and N2O emissions. However, there was no significant correlation between N2O emissions and soil temperature in this study. The grain yields of wheat improved after conversion to subsoiling. Under HTS, RTS and NTS, the average grain yield was elevated by approximately 42.5%, 27.8% and 60.3% respectively. Our findings indicate that RTS and HTS would be ideal rotation tillage systems to balance GWP decreases and grain yield improvements in the North China Plain region. 相似文献
77.
全球转基因大豆专利信息分析与技术展望 总被引:2,自引:0,他引:2
转基因大豆作为目前转基因作物推广种植面积最广的作物,在保障人类油料与饲料供给上发挥着重要作用。基于智慧芽数据库(PatSnap)对欧盟、美国及中国等国家地区1985~2016年收录的全球转基因大豆技术领域专利文献进行统计分析,得出全球转基因大豆专利信息的总体发展趋势、研发热点及技术分布与格局,并对比分析了我国转基因大豆研发的竞争力,对未来转基因大豆的产业发展提出了展望。 相似文献
78.
Jiajia Dong Leiliang He Fei Yu Songcheng Yu Lie Liu Yongmei Tian Yilin Wang Jia Wang Lingbo Qu Yongjun Wu Runping Han 《Luminescence》2019,34(3):368-374
The occurrence of many diseases is closely related to the high expression of DNA methyltransferase 1 (DNMT1). However, most studies are focused on the detection of DNMT1 activity, a few are concerned with the detection of DNMT1 content. In this study, we developed a simple and highly sensitive chemiluminescence (CL) assay for the detection of DNMT1 content. In this method, anti‐DNMT1 monoclonal antibody was coated on a polystyrene microplate to capture DNMT1. Then anti‐DNMT1 polyclonal antibody and goat anti‐rabbit immunoglobulin G with horseradish peroxidase (IgG‐HRP) were respectively added to combine with captured DNMT1 to form a sandwich structure. Finally, the HRP could catalyze CL substrate and achieve CL signal response. Based on this novel sensitive strategy, the recovery percents were in the ranges from 71.5% to 91.0%. The precision of intra‐assays and inter‐assays were 5.45%–11.29% and 7.03%–11.25%, respectively. The method was successfully applied for the determination of DNMT1 in human serum. The detection results of serum samples showed that the proposed assay had a high correlation with enzyme‐linked immunosorbent assay (ELISA) kit. Compared with the ELISA kit (limit of detection = 0.1 ng/mL), the method has a lower limit of detection of 0.042 ng/mL. Therefore, our method has the potential for the detection of DNMT1 content in clinical diagnosis. 相似文献
79.
Qiang‐Qiang Xiong Tian‐Hua Shen Lei Zhong Chang‐Lan Zhu Xiao‐Song Peng Xiao‐Peng He Jun‐Ru Fu Lin‐Juan Ouyang Jian‐Min Bian Li‐Fang Hu Xiao‐Tang Sun Jie Xu Hui‐Ying Zhou Hao‐Hua He Xiao‐Rong Chen 《Physiologia plantarum》2019,167(4):564-584
Abrupt drought–flood alternation (T1) is a meteorological disaster that frequently occurs during summer in southern China and the Yangtze river basin, often causing a significant loss of rice production. In this study, the response mechanism of yield decline under abrupt drought–flood alternation stress at the panicle differentiation stage was analyzed by looking at the metabolome, proteome as well as yield and physiological and biochemical indexes. The results showed that drought and flood stress caused a decrease in the yield of rice at the panicle differentiation stage, and abrupt drought–flood alternation stress created a synergistic effect for the reduction of yield. The main reason for the decrease of yield per plant under abrupt drought–flood alternation was the decrease of seed setting rate. Compared with CK0 (no drought and no flood), the net photosynthetic rate and soluble sugar content of T1 decreased significantly and its hydrogen peroxidase, superoxide dismutase, peroxidase activity increased significantly. The identified differential metabolites and differentially expressed proteins indicated that photosynthesis metabolism, energy metabolism pathway and reactive oxygen species response have changed strongly under abrupt drought–flood alteration stress, which are factors that leads to the rice grain yield reduction. 相似文献
80.
Yaowen Wang Wei Pan Xinyu Bai Xukai Wang Yan Wang Yuehui Yin 《Journal of cellular and molecular medicine》2021,25(11):5082-5098
The current study aimed to investigate the mechanism by which miR-454 influences the progression of heart failure (HF) in relation to the neural precursor cell expressed, developmentally downregulated 4-2 (NEDD4-2)/tropomyosin receptor kinase A (TrkA)/cyclic adenosine 3',5'-monophosphate (cAMP) axis. Sprague-Dawley rats were used to establish a HF animal model via ligation of the left anterior descending branch of the coronary artery. The cardiomyocyte H9c2 cells were treated with H2O2 to stimulate oxidative stress injury in vitro. RT-qPCR and Western blot assay were subsequently performed to determine the expression patterns of miR-454, NEDD4-2, TrkA, apoptosis-related proteins and cAMP pathway markers. Dual-luciferase reporter gene assay coupled with co-immunoprecipitation was performed to elucidate the relationship between miR-454, NEDD4-2 and TrkA. Gain- or loss-of-function experiments as well as rescue experiments were conducted via transient transfection (in vitro) and adenovirus infection (in vivo) to examine their respective functions on H9c2 cell apoptosis and myocardial damage. Our results suggested that miR-454 was aberrantly downregulated in the context of HF, while evidence was obtained suggesting that it targeted NEDD4-2 to downregulate NEDD4-2 in cardiomyocytes. miR-454 exerted anti-apoptotic and protective effects on cardiomyocytes through inhibition of NEDD4-2, while NEDD4-2 stimulated ubiquitination and degradation of TrkA protein. Furthermore, miR-454 activated the cAMP pathway via the NEDD4-2/TrkA axis, which ultimately suppressed cardiomyocyte apoptosis and attenuated myocardial damage. Taken together, the key findings of the current study highlight the cardioprotective role of miR-454, which is achieved through activation of the cAMP pathway by impairing NEDD4-2-induced TrkA ubiquitination. 相似文献