首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76615篇
  免费   5622篇
  国内免费   4890篇
  2024年   166篇
  2023年   1076篇
  2022年   2451篇
  2021年   4139篇
  2020年   2639篇
  2019年   3262篇
  2018年   3202篇
  2017年   2320篇
  2016年   3280篇
  2015年   4845篇
  2014年   5575篇
  2013年   6014篇
  2012年   7044篇
  2011年   6179篇
  2010年   3721篇
  2009年   3341篇
  2008年   3738篇
  2007年   3361篇
  2006年   2920篇
  2005年   2385篇
  2004年   1959篇
  2003年   1660篇
  2002年   1404篇
  2001年   1233篇
  2000年   1219篇
  1999年   1124篇
  1998年   667篇
  1997年   660篇
  1996年   669篇
  1995年   619篇
  1994年   547篇
  1993年   377篇
  1992年   571篇
  1991年   437篇
  1990年   406篇
  1989年   282篇
  1988年   244篇
  1987年   234篇
  1986年   167篇
  1985年   193篇
  1984年   109篇
  1983年   117篇
  1982年   71篇
  1981年   58篇
  1980年   37篇
  1979年   61篇
  1977年   30篇
  1974年   38篇
  1973年   34篇
  1972年   30篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
971.
Bone marrow-derived mesenchymal stem cells (BM-MSCs), the common progenitor cells of adipocytes and osteoblasts, have been recognized as the key mediator during bone formation. Herein, our study aim to investigate molecular mechanisms underlying circular RNA (circRNA) AFF4 (circ_AFF4)-regulated BM-MSCs osteogenesis. BM-MSCs were characterized by FACS, ARS, and ALP staining. Expression patterns of circ_AFF4, miR-135a-5p, FNDC5/Irisin, SMAD1/5, and osteogenesis markers, including ALP, BMP4, RUNX2, Spp1, and Colla1 were detected by qRT-PCR, western blot, or immunofluorescence staining, respectively. Interactions between circ_AFF4 and miR-135a-5p, FNDC5, and miR-135a-5p were analyzed using web tools including TargetScan, miRanda, and miRDB, and further confirmed by luciferase reporter assay and RNA pull-down. Complex formation between Irisin and Integrin αV was verified by Co-immunoprecipitation. To further verify the functional role of circ_AFF4 in vivo during bone formation, we conducted animal experiments harboring circ_AFF4 knockdown, and born samples were evaluated by immunohistochemistry, hematoxylin and eosin, and Masson staining. Circ_AFF4 was upregulated upon osteogenic differentiation induction in BM-MSCs, and miR-135a-5p expression declined as differentiation proceeds. Circ_AFF4 knockdown significantly inhibited osteogenesis potential in BM-MSCs. Circ_AFF4 stimulated FNDC5/Irisin expression through complementary binding to its downstream target molecule miR-135a-5p. Irisin formed an intermolecular complex with Integrin αV and activated the SMAD1/5 pathway during osteogenic differentiation. Our work revealed that circ_AFF4, acting as a sponge of miR-135a-5p, triggers the promotion of FNDC5/Irisin via activating the SMAD1/5 pathway to induce osteogenic differentiation in BM-MSCs. These findings gained a deeper insight into the circRNA-miRNA regulatory system in the bone marrow microenvironment and may improve our understanding of bone formation-related diseases at physiological and pathological levels.Subject terms: Stem cells, Diseases  相似文献   
972.
973.
974.
Cerebral glucose metabolism is a reliable index of neural activity and may provide evidence for brain function in healthy adults. We studied the correlation between cerebral glucose metabolism and age under the resting-state in both sexes with position emission tomography. Statistical test of age effect on cerebral glucose metabolism was performed using the statistical parametric mapping software with a voxel-by-voxel approach ( family wise error corrected, -voxel threshold). The subjects consisted of 108 females (mean S.D. = 4510 years) and 126 males (mean S.D. = 4911 years). We showed here that brain activity in the frontal and temporal lobes in both sexes decreased significantly with normal aging. The glucose metabolism in the caudate bilaterally showed a negative correlation with age in males, but not in females. Few regions in males were shown with an increased glucose metabolism with age. Although the mechanisms of brain aging are still unknown, a map of brain areas susceptible to age was described in this report.  相似文献   
975.
976.
Insufficient nutrients supply will greatly affect the function of cardiac myocytes. The adaptive responses of cardiac myocytes to nutritional stress are not fully known. Ginsenoside Rg1 is one of the most pharmacologically active components in Panax Ginseng and possesses protective effects on cardiomyocyte. Here, we investigate the effects of ginsenoside Rg1 on H9c2 cells which were subjected to nutritional stress. Nutritional stress-induced by glucose deprivation strongly induced cell death and this response was inhibited by ginsenoside Rg1. Importantly, glucose deprivation decreased intracellular ATP levels and mitochondrial membrane potential. Ginsenoside Rg1 rescued ATP levels and mitochondrial membrane potential in nutrient-starved cells. For molecular mechanisms, ginsenoside Rg1 increased the expressions of PTEN-induced kinase 1 (PINK1) and p-AMPK in glucose deprivation treated H9c2 cells. Reducing the expression of aldolase in H9c2 cells inhibited ginsenoside Rg1′s actions on PINK1 and p-AMPK. Further, the nutritional stress mice were used to verify the mechanisms obtained in vitro. Ginsenoside Rg1 increased the expressions of aldolase, p-AMPK, and PINK1 in starved mice heart. Taken together, our results reveal that ginsenoside Rg1 limits nutritional stress-induced H9c2 cells injury by regulating the aldolase /AMP-activated protein kinase/PINK1 pathway.  相似文献   
977.
978.
979.
Liu  Xianchen  Yang  Yanyun  Liu  Zhen-Zhen  Luo  Yachen  Fan  Fang  Jia  Cun-Xian 《Sleep and biological rhythms》2019,17(3):339-348
Sleep and Biological Rhythms - Insomnia is prevalent in adolescents. Although several insomnia scales/questionnaires are available to assess insomnia symptoms and severity for adults, no insomnia...  相似文献   
980.
Root growth relies on both cell division and cell elongation, which occur in the meristem and elongation zones, respectively. SCARECROW (SCR) and SHORT-ROOT (SHR) are GRAS family genes essential for root growth and radial patterning in the Arabidopsis root. Previous studies showed that SCR and SHR promote root growth by suppressing cytokinin response in the meristem, but there is evidence that SCR expressed beyond the meristem is also required for root growth. Here we report a previously unknown role for SCR in promoting cell elongation. Consistent with this, we found that the scr mutant accumulated a higher level of reactive oxygen species (ROS) in the elongation zone, which is probably due to decreased expression of peroxidase gene 3, which consumes hydrogen peroxide in a reaction leading to Casparian strip formation. When the oxidative stress response was blocked in the scr mutant by mutation in ABSCISIC ACID 2 (ABA2) or when the redox status was ameliorated by the upbeat 1 (upb1) mutant, the root became significantly longer, with longer cells and a larger and more mitotically active meristem. Remarkably, however, the stem cell and radial patterning defects in the double mutants still persisted. Since ROS and peroxidases are essential for endodermal differentiation, these results suggest that SCR plays a role in coordinating cell elongation, endodermal differentiation, redox homeostasis and oxidative stress response in the root. We also provide evidence that this role of SCR is independent of SHR, even though they function similarly in other aspects of root growth and development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号