首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1594篇
  免费   104篇
  国内免费   142篇
  2024年   8篇
  2023年   40篇
  2022年   76篇
  2021年   155篇
  2020年   75篇
  2019年   84篇
  2018年   83篇
  2017年   59篇
  2016年   99篇
  2015年   134篇
  2014年   111篇
  2013年   154篇
  2012年   161篇
  2011年   130篇
  2010年   78篇
  2009年   52篇
  2008年   57篇
  2007年   39篇
  2006年   42篇
  2005年   26篇
  2004年   27篇
  2003年   13篇
  2002年   18篇
  2001年   16篇
  2000年   13篇
  1999年   15篇
  1998年   7篇
  1997年   11篇
  1996年   7篇
  1995年   7篇
  1994年   6篇
  1993年   4篇
  1992年   11篇
  1991年   6篇
  1990年   5篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1983年   1篇
排序方式: 共有1840条查询结果,搜索用时 31 毫秒
81.
Abrupt drought–flood alternation (T1) is a meteorological disaster that frequently occurs during summer in southern China and the Yangtze river basin, often causing a significant loss of rice production. In this study, the response mechanism of yield decline under abrupt drought–flood alternation stress at the panicle differentiation stage was analyzed by looking at the metabolome, proteome as well as yield and physiological and biochemical indexes. The results showed that drought and flood stress caused a decrease in the yield of rice at the panicle differentiation stage, and abrupt drought–flood alternation stress created a synergistic effect for the reduction of yield. The main reason for the decrease of yield per plant under abrupt drought–flood alternation was the decrease of seed setting rate. Compared with CK0 (no drought and no flood), the net photosynthetic rate and soluble sugar content of T1 decreased significantly and its hydrogen peroxidase, superoxide dismutase, peroxidase activity increased significantly. The identified differential metabolites and differentially expressed proteins indicated that photosynthesis metabolism, energy metabolism pathway and reactive oxygen species response have changed strongly under abrupt drought–flood alteration stress, which are factors that leads to the rice grain yield reduction.  相似文献   
82.
The avian circadian rhythm pacemaker is composed of the retina, pineal gland and suprachiasmatic nucleus. As an intact input-pacemaker-output system, each of these structures is linked within a neuroendocrine loop to influence downstream processes and peripheral oscillations. While our previous study found that monochromatic light affected the circadian rhythms of clock genes in the chick retina, the effect of the pineal gland on the response of the retinal circadian clock under monochromatic light still remains unclear. In this study, a total of 144 chicks, including sham-operated and pinealectomized groups, were exposed to white, red, green or blue light. After 2 weeks of light illumination, the circadian expression of six core clock genes (cClock, cBmal1, cCry1, cCry2, cPer2 and cPer3), melanopsin (cOpn4-1, cOpn4-2), Arylalkylamine N-acetyltransferase (cAanat) and melatonin was examined in the retina. The cBmal1, cCry1, cPer2, cPer3, cOpn4-1, cOpn4-2 and cAanat genes as well as melatonin had circadian rhythmic expression in both the sham-operated and pinealectomized groups under different monochromatic lights, while cClock and cCry2 had arrhythmic 24 h profiles in all of the light-treated groups. After pinealectomy, the rhythmicity of the clock genes, melanopsins, cAanat and melatonin in the chick retina did not change, especially the mesors, amplitudes and phases of cBmal1, cOpn4-1, cOpn4-2, cAanat and melatonin. Compared to the white light group, however, green light increased the mRNA expression of the positive-regulating clock genes cBmal1, cAanat, cOpn4-1 and cOpn4-2 as well as the melatonin content in pinealectomized chicks, whereas red light decreased their expression. These results suggest that the chick retina is a relatively independent circadian oscillator from the pineal gland, whose circadian rhythmicity (including photoreception, molecular clock and melatonin output) is not altered after pinealectomization. Moreover, green light increases ocular cAanat expression and melatonin synthesis by accelerating the expression of melanopsin and positive-regulating clock genes cBmal1 and cClock.  相似文献   
83.
84.
85.
为了解人工混交林群落结构特征和物种多样性关系,对广州龙眼洞林场内闽楠(Phoebebournei)-樟(Cinnamomum camphora)人工混交林进行群落结构分析。结果表明, 0.37 hm2样地内共有128种植物9 563株,隶属于57科99属;其中乔木35种,灌木61种,草本98种。在乔木层中,重要值排名前5的植物分别是山乌桕(Triadica cochinchinensis)(33.86%)、闽楠(17.24%)、樟(12.96%)、三桠苦(Melicopepteleifolia)(7.92%)和山苍子(Litseapungens)(3.70%);灌木层以茜草科(Rubiaceae)植物为主;草本层以禾本科(Poaceae)植物为主。乔木层、灌木层和草本层的Shannon-Wiener指数分别为1.230、1.708和1.754,Simpson指数分别为0.635、0.680和0.707,表明该人工混交林下草本物种丰富。非度量多维尺度分析(NMDS)表明,不同样方的物种组成相似性并不一致,部分样方含有偶见种。群落的径级结构呈倒“J”型,其中11.64%为幼苗,苗木占比6....  相似文献   
86.
Hybridization and resulting introgression are important processes shaping the tree of life and appear to be far more common than previously thought. However, how the genome evolution was shaped by various genetic and evolutionary forces after hybridization remains unresolved. Here we used whole-genome resequencing data of 227 individuals from multiple widespread Populus species to characterize their contemporary patterns of hybridization and to quantify genomic signatures of past introgression. We observe a high frequency of contemporary hybridization and confirm that multiple previously ambiguous species are in fact F1 hybrids. Seven species were identified, which experienced different demographic histories that resulted in strikingly varied efficacy of selection and burdens of deleterious mutations. Frequent past introgression has been found to be a pervasive feature throughout the speciation of these Populus species. The retained introgressed regions, more generally, tend to contain reduced genetic load and to be located in regions of high recombination. We also find that in pairs of species with substantial differences in effective population size, introgressed regions are inferred to have undergone selective sweeps at greater than expected frequencies in the species with lower effective population size, suggesting that introgression likely have higher potential to provide beneficial variation for species with small populations. Our results, therefore, illustrate that demography and recombination have interplayed with both positive and negative selection in determining the genomic evolution after hybridization.  相似文献   
87.
叶绿体基因组编码许多参与光合作用和其他代谢过程的关键蛋白质,在叶绿体中合成的代谢物对于植物正常的生长发育至关重要。根对紫外线-B辐射敏感[Root-UVB (ultraviolet radiation B)-sensitive, RUS]蛋白属于叶绿体蛋白,由高度保守的DUF647结构域组成,在参与植物形态发生、物质运输和能量代谢等多种生命活动的调控中发挥作用。本文就近年来关于RUS家族在植物的胚胎发育、光形态建成、维生素B6稳态、生长素转运和花药发育等生长发育过程中的相关研究进行回顾和总结,为深入研究其在植物生长发育中的分子调控机制提供了参考。  相似文献   
88.
89.
Vigilance behavior is considered as an effective strategy for prey species to detect predators.An individual benefits from living in a group by reducing the time spent being vigilant without affecting the probability of detecting a predator.However,the mechanism producing a decrease in vigilance with increasing group size is unclear.Many models of vigilance assume that group members scan independently of one another.Yet in recent studies,the other 2 patterns of vigilance,coordination and synchronization,were reported in some species.In 2 summers(2018 and 2019),we studied the group-size effect on vigilance and foraging of Tibetan wild ass in Chang Tang Nature Reserve of Tibet.We also tested whether individuals scan the environment independently,tend to coordinate their scans,or tend to synchronize their vigilance.The results showed that individuals decreased the time spent on vigilance with increasing group size,while increased the time spent foraging.Group members scanned the environment at the same time more frequently and there was a positive correlation between group members'behaviors,indicating that Tibetan wild asses tend to synchronize their vigilance.  相似文献   
90.
DNA methylation is a prevalent epigenetic modification in vertebrates, and it has been shown to be involved the regulation of gene expression and embryo development. However, it remains unclear how DNA methylation regulates sexual development, especially in species without sex chromosomes. To determine this, we utilized zebrafish to investigate DNA methylation reprogramming during juvenile germ cell development and adult female-to-male sex transition.We reveal that primordial germ cells(PGCs) undergo significant DNA methylation reprogramming during germ cell development, and the methylome of PGCs is reset to an oocyte/ovary-like pattern at 9 days post fertilization(9 dpf). When DNA methyltransferase(DNMT) activity in juveniles was blocked after 9 dpf, the zebrafish developed into females. We also show that Tet3 is involved in PGC development. Notably, we find that DNA methylome reprogramming during adult zebrafish sex transition is similar to the reprogramming during the sex differentiation from 9 dpf PGCs to sperm. Furthermore, inhibiting DNMT activity can prevent the female-to-male sex transition, suggesting that methylation reprogramming is required for zebrafish sex transition. In summary, DNA methylation plays important roles in zebrafish germ cell development and sexual plasticity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号