首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76184篇
  免费   5547篇
  国内免费   4871篇
  86602篇
  2024年   156篇
  2023年   1033篇
  2022年   2392篇
  2021年   4075篇
  2020年   2619篇
  2019年   3232篇
  2018年   3166篇
  2017年   2297篇
  2016年   3257篇
  2015年   4809篇
  2014年   5546篇
  2013年   5988篇
  2012年   7025篇
  2011年   6157篇
  2010年   3714篇
  2009年   3334篇
  2008年   3722篇
  2007年   3355篇
  2006年   2908篇
  2005年   2381篇
  2004年   1958篇
  2003年   1654篇
  2002年   1399篇
  2001年   1232篇
  2000年   1219篇
  1999年   1121篇
  1998年   662篇
  1997年   656篇
  1996年   666篇
  1995年   616篇
  1994年   544篇
  1993年   379篇
  1992年   568篇
  1991年   438篇
  1990年   407篇
  1989年   282篇
  1988年   244篇
  1987年   234篇
  1986年   167篇
  1985年   193篇
  1984年   109篇
  1983年   117篇
  1982年   71篇
  1981年   58篇
  1980年   37篇
  1979年   61篇
  1977年   30篇
  1974年   38篇
  1973年   34篇
  1972年   30篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Plant growth-promoting rhizobacteria (PGPRs) confer benefits to crops by producing volatile organic compounds (VOCs) to trigger induced systemic tolerance (IST). Here we show that Bacillus velezensis GJ11, a kind of PGPRs, produce VOCs such as 2,3-butanediol and acetoin to trigger IST and cause stomatal closure against O3 injury in tobacco plants. Compared to 2,3-butanediol, acetoin was more effective on triggering IST against O3 injury. The bdh-knockout strain GJ11Δbdh with a blocked metabolic pathway from acetoin to 2,3-butanediol produced more acetoin triggering stronger IST against O3 injury than GJ11. Both acetoin and GJ11Δbdh effectively enhance the antioxidant enzymes activity (e.g. superoxide dismutase and catalases) that is favorable for scavenging the reactive oxygen species like H2O2 in leaves after exposure to O3. Consequently, less H2O2 accumulation was observed, and reasonably less chlorophylls and proteins were damaged by H2O2 in the tobacco leaves treated with acetoin or GJ11Δbdh. The field experiment also showed that both acetoin and GJ11Δbdh could protect tobacco plants from O3 injury after application by root-drench. This study provides new insights into the role of rhizobacterial B. velezensis and its volatile component of acetoin in triggering defense responses against stresses such as O3 in plants.  相似文献   
992.
Tomato is one of the most popular horticultural crops, and many commercial tomato cultivars are particularly susceptible to Botrytis cinerea. Non-expressor of pathogenesis-related gene 1 (NPR1) is a critical component of the plant defense mechanisms. However, our understanding of how SlNPR1 influences disease resistance in tomato is still limited. In this study, two independent slnpr1 mutants were used to study the role of SlNPR1 in tomato resistance against B. cinerea. Compared to (WT), slnpr1 leaves exhibited enhanced resistance against B. cinerea with smaller lesion sizes, higher activities of chitinase (CHI), β-1, 3-glucanases (GLU) and phenylalanine ammonia-lyase (PAL), and significantly increased expressions of pathogenesis-related genes (PRs). The increased activities of peroxidase (POD), ascorbate peroxidase (APX) and decreased catalase (CAT) activities collectively regulated reactive oxygen species (ROS) homeostasis in slnpr1 mutants. The integrity of the cell wall in slnpr1 mutants was maintained. Moreover, the enhanced resistance was further reflected by induction of defense genes involved in jasmonic acid (JA) and ethylene (ET) signaling pathways. Taken together, these findings revealed that knocking out SlNPR1 resulted in increased activities of defense enzymes, changes in ROS homeostasis and integrity of cell walls, and activation of JA and ET pathways, which confers resistance against B. cinerea in tomato plants.  相似文献   
993.
Ma  Jie  Liu  Ran  Li  Chenhua  Fan  Lianlian  Xu  Guiqing  Li  Yan 《Plant and Soil》2020,449(1-2):193-207
Plant and Soil - Although the linkages between aboveground photosynthates production and belowground respiration processes have been well studied, doubts remain as to the extent that photosynthate...  相似文献   
994.
Recent studies have demonstrated that hydrogen sulfide (H2S) produced through the activity of l -cysteine desulfhydrase (DES1) is an important gaseous signaling molecule in plants that could participate in abscisic acid (ABA)-induced stomatal closure. However, the coupling of the DES1/H2S signaling pathways to guard cell movement has not been thoroughly elucidated. The results presented here provide genetic evidence for a physiologically relevant signaling pathway that governs guard cell in situ DES1/H2S function in stomatal closure. We discovered that ABA-activated DES1 produces H2S in guard cells. The impaired guard cell ABA phenotype of the des1 mutant can be fully complemented when DES1/H2S function has been specifically rescued in guard cells and epidermal cells, but not mesophyll cells. This research further characterized DES1/H2S function in the regulation of LONG HYPOCOTYL1 (HY1, a member of the heme oxygenase family) signaling. ABA-induced DES1 expression and H2S production are hyper-activated in the hy1 mutant, both of which can be fully abolished by the addition of H2S scavenger. Impaired guard cell ABA phenotype of des1/hy1 can be restored by H2S donors. Taken together, this research indicated that guard cell in situ DES1 function is involved in ABA-induced stomatal closure, which also acts as a pivotal hub in regulating HY1 signaling.  相似文献   
995.
Although the function and regulation of SnRK1 have been studied in various plants, its molecular mechanisms in response to abiotic stresses are still elusive. In this work, we identified an AP2/ERF domain-containing protein (designated GsERF7) interacting with GsSnRK1 from a wild soybean cDNA library. GsERF7 gene expressed dominantly in wild soybean roots and was responsive to ethylene, salt, and alkaline. GsERF7 bound GCC cis-acting element and could be phosphorylated on S36 by GsSnRK1. GsERF7 phosphorylation facilitated its translocation from cytoplasm to nucleus and enhanced its transactivation activity. When coexpressed in the hairy roots of soybean seedlings, GsSnRK1(wt) and GsERF7(wt) promoted plants to generate higher tolerance to salt and alkaline stresses than their mutated species, suggesting that GsSnRK1 may function as a biochemical and genetic upstream kinase of GsERF7 to regulate plant adaptation to environmental stresses. Furthermore, the altered expression patterns of representative abiotic stress-responsive and hormone-synthetic genes were determined in transgenic soybean hairy roots after stress treatments. These results will aid our understanding of molecular mechanism of how SnRK1 kinase plays a cardinal role in regulating plant stress resistances through activating the biological functions of downstream factors.  相似文献   
996.
Huang  Yanping  Wang  Baowei  Liu  Guodong  Ge  Wenhua  Zhang  Mingai  Yue  Bin  Kong  Min 《Biological trace element research》2020,194(2):482-492
Biological Trace Element Research - This study investigated the effects of dietary supplementation of Bacillus subtilis-zinc on growth rates of the body and organs, nutrient utilization, microbial...  相似文献   
997.
Yin  Yulin  Zhang  Peijun  Liu  Jia  Wang  Nan  Shang  Xinchi  Zhang  Yilin  Li  Yuehong 《Biological trace element research》2020,194(2):552-559
Biological Trace Element Research - Cadmium (Cd) is the most common heavy metal and is easily detected in aquatic environments on a global scale. Vitamin C was a widely used vitamin in aquaculture....  相似文献   
998.
Li  Shasha  Liu  Keke  Yu  Saisai  Jia  Shanshan  Chen  Shuo  Fu  Yuheng  Sun  Feng  Luo  Qiangwei  Wang  Yuejin 《Plant Cell, Tissue and Organ Culture》2020,140(2):389-401
Plant Cell, Tissue and Organ Culture (PCTOC) - The fruit of ‘Dangshansuli’ pear is yellowish green in colour, while that of its mutant ‘Xiusu’ is russet in colour. A...  相似文献   
999.
1000.
1. DNA metabarcoding is a cost-effective species identification approach with great potential to assist entomological ecologists. This review presents a practical guide to help entomological ecologists design their own DNA metabarcoding studies and ensure that sound ecological conclusions can be obtained. 2. The review considers approaches to field sampling, laboratory work, and bioinformatic analyses, with the aim of providing the background knowledge needed to make decisions at each step of a DNA metabarcoding workflow. 3. Although most conventional sampling methods can be adapted to DNA metabarcoding, this review highlights techniques that will ensure suitable DNA preservation during field sampling and laboratory storage. The review also calls for a greater understanding of the occurrence, transportation, and deposition of environmental DNA when applying DNA metabarcoding approaches for different ecosystems. 4. Accurate species detection with DNA metabarcoding needs to consider biases introduced during DNA extraction and PCR amplification, cross-contamination resulting from inappropriate amplicon library preparation, and downstream bioinformatic analyses. Quantifying species abundance with DNA metabarcoding is in its infancy, yet recent studies demonstrate promise for estimating relative species abundance from DNA sequencing reads. 5. Given that bioinformatics is one of the biggest hurdles for researchers new to DNA metabarcoding, several useful graphical user interface programs are recommended for sequence data processing, and the application of emerging sequencing technologies is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号