首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5377篇
  免费   404篇
  国内免费   299篇
  2024年   9篇
  2023年   75篇
  2022年   130篇
  2021年   242篇
  2020年   185篇
  2019年   221篇
  2018年   198篇
  2017年   178篇
  2016年   283篇
  2015年   328篇
  2014年   367篇
  2013年   438篇
  2012年   494篇
  2011年   435篇
  2010年   256篇
  2009年   204篇
  2008年   290篇
  2007年   234篇
  2006年   207篇
  2005年   184篇
  2004年   185篇
  2003年   140篇
  2002年   148篇
  2001年   86篇
  2000年   52篇
  1999年   77篇
  1998年   49篇
  1997年   54篇
  1996年   39篇
  1995年   29篇
  1994年   32篇
  1993年   21篇
  1992年   33篇
  1991年   12篇
  1990年   13篇
  1989年   17篇
  1988年   15篇
  1987年   13篇
  1986年   11篇
  1985年   11篇
  1984年   12篇
  1983年   20篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1977年   5篇
  1975年   6篇
  1974年   5篇
  1973年   6篇
  1970年   3篇
排序方式: 共有6080条查询结果,搜索用时 15 毫秒
991.
APC/Cdh1 is a major cell cycle regulator and its function has been implicated in DNA damage repair; however, its exact role remains unclear. Using affinity purification coupled with mass spectrometry, we identified Claspin as a novel Cdh1-interacting protein and further demonstrated that Claspin is a novel Cdh1 ubiquitin substrate. As a result, inactivation of Cdh1 leads to activation of the Claspin/Chk1 pathway. Previously, we demonstrated that Rb interacts with Cdh1 to influence its ability to degrade Skp2. Here, we report that Cdh1 reciprocally regulates the Rb pathway through competing with E2F1 to bind the hypophosphorylated form of Rb. Although inactivation of Cdh1 in HeLa cells, with defective p53/Rb pathways, led to premature S phase entry, acute depletion of Cdh1 in primary human fibroblasts resulted in premature senescence. Acute loss of many other major tumor suppressors, including PTEN and VHL, also induces premature senescence in a p53- or Rb-dependent manner. Similarly, we showed that inactivation of the p53/Rb pathways by overexpression of SV40 LT-antigen partially reversed Cdh1 depletion–induced growth arrest. Therefore, loss of Cdh1 is only beneficial to cells with abnormal p53 and Rb pathways, which helps explain why Cdh1 loss is not frequently found in many tumors.  相似文献   
992.
In order to study the mechanism of monoclonal antibody (McAb) against a porcine 40-kDa adipocyte-specific plasma membrane protein in reducing fat deposition, porcine primary adipocytes were treated with the McAb during the process of adipocyte differentiation; its effect on expression of lipid metabolism related genes was investigated. Adipocytes were treated with 1-methyl-3-isobutylmethylxanthine (IDX) plus 10 μg/mL of the McAb or without McAb. The mRNA levels of adipocyte differentiation related genes (PPARγ and C/EBPα), lipid metabolism related genes (FAS, HSL, CPT-1B, DGAT and A-FABP) and adiponectin gene (AdipoQ) were determined using real-time quantitative PCR. The results showed that the differentiated adipocyte number and triglyceride (TG) content in adipocytes treated with the McAb were lower than that in cells without McAb during the whole process of adipocyte differentiation. The McAb significantly reduced mRNA expression of PPARγ, C/EBPα, FAS, DGAT, A-FABP and adiponectin genes, but increased mRNA expression of HSL and CPT-1B genes during the medium and latter stage of adipocyte differentiation. This suggested that the McAb decreased triglycerol accumulation in adipocyte by both inhibiting adipocyte differentiation and regulating lipid metabolism, especially at the medium and latter stage of porcine adipocyte differentiation.  相似文献   
993.
Alternanthera philoxeroides has successfully invaded diverse habitats with considerably various water availability, threatening biological diversity in many parts of the world. Because its genetic variation is very low, phenotypic plasticity is believed to be the primary strategy for adapting to the diverse habitats. In the present paper, we investigated the plastic changes of anatomical traits of the aerial parts of A. philoxeroides from flooding to wet then to drought habitat; the results are as follows: A. philoxeroides could change anatomical structures sensitively to adapt to water regime. As a whole, effects of water regime on structures in stem were greater than those in leaf. Except for principal vein diameter and stoma density on leaf surfaces, all other structural traits were significantly affected by water regime. Among which, cuticular wax layer, collenchyma cell wall, phloem fiber cell wall, and hair density on both leaf surfaces thickened significantly with decrease of water availability, whereas, pith cavity and vessel lumen in stem lessened significantly; wet habitat is vital for the spread of A. philoxeroides from flooding to drought habitat and vice versa, because in this habitat, it had the greatest structural variations; when switching from flooding to wet then to drought habitat, the variations of cuticular wax layer, collenchyma cell wall, phloem fiber cell wall, pith cavity area ratio, diameter of vessel lumen, and hair density on both leaf surfaces, played the most important role. These responsive variables contribute most to the adaptation of A. philoxeroides to diverse habitats with considerably various water availability.  相似文献   
994.
Rice cultivar zhonghua11 (Oryza sativa L. ssp. japonica) plants with decreased sedoheptulose-1, 7-bisphosphatase (SBPase) were obtained by transformation with the rice SBPase antisense gene under the control of the maize ubiquitin promoter. The transgenic and wild-type plants were grown at different nitrogen levels (0.1, 1, or 10 mM NH4NO3). Growth rates of the seedlings were measured by the changes in dry weight, and the photosynthetic carbon reduction activities and the potential efficiency of photosystem II were measured by CO2 assimilation and F v/F m, respectively. At low N, there are strong effects on growth and photosynthesis when SBPase was reduced by genetic manipulation. Decreased SBPase activity led to a decrease in the amount of starch accumulated in the leaves at all N levels and the decrease was much more prominent in low N than that in high N, but the starch allocation between shoot and root was unaltered. The analysis of chlorophyll fluorescence and SBPase activity indicated that the decrease of growth and photosynthesis at different N levels were not related to the function of PSII but to the activity of SBPase. Western blot analysis showed the content of SBPase in thylakoid membranes was much more than in the stroma fractions in transgenic plants at low N. Results suggested that low N in addition to a 34% decrease in SBPase activity is sufficient to diminish photosynthesis and limit biomass production. Decreased SBPase activity may reduce the N use efficiency of photosynthesis and growth and alter biomass allocation.  相似文献   
995.
Interaction between GAP-43 (growth associated protein-43) and Gαo (alpha subunit of Go protein) influences the signal transduction pathways leading to differentiation of neural cells. GAP-43 is known to increase guanine nucleotide exchange by Gαo, which is a major component of neuronal growth cone membranes. However, it is not clear whether GAP-43 stimulation is related to the Gαo palmitoylation or the conversion of Gαo from oligmers to monomers, which was shown to be a necessary regulatory factor in GDP/GTP exchange of Gαo. Here we expressed and purified GAP-43, GST-GAP-43 and Gαo proteins, detected their stimulatory effect on [35S]-GTPγS binding of Gαo. It was found that the EC50 of both GAP-43 and GST-GAP-43 activation were tenfold lower in case of depalmitoylated Gαo than palmitoylated Gαo. Non-denaturing gel electrophoresis and p-PDM cross-linking analysis revealed that addition of GST-GAP-43 induced disassociation of depalmitoylated Gαo from oligomers to monomers, but did not influence the oligomeric state of palmitoylated Gαo, which suggests that palmitoylation is a key regulatory factor in GAP-43 stimulation on Gαo. These results indicated the interaction of GAP-43 and Gαo could accelerate conversion of depalmitoylated Gαo but not palmitoylated Gαo from oligomers to monomers, so as to increase the GTPγS binding activity of Gαo. Results here provide new evidence about how signaling protein palmitoylation is involved in the G-protein-coupled signal transduction cascade, and give a useful clue on the participation of GAP-43 in G-protein cycle by its preferential activation of depalmitoylated Gαo.  相似文献   
996.
Most newly synthesized peroxisomal proteins are imported in a receptor-mediated fashion, depending on the interaction of a peroxisomal targeting signal (PTS) with its cognate targeting receptor Pex5 or Pex7 located in the cytoplasm. Apart from this classic mechanism, heterologous protein complexes that have been proposed more than a decade ago are also to be imported into peroxisomes. However, it remains still unclear if this so-called piggyback import is of physiological relevance in mammals. Here, we show that Cu/Zn superoxide dismutase 1 (SOD1), an enzyme without an endogenous PTS, is targeted to peroxisomes using its physiological interaction partner 'copper chaperone of SOD1' (CCS) as a shuttle. Both proteins have been identified as peroxisomal constituents by 2D-liquid chromatography mass spectrometry of isolated rat liver peroxisomes. Yet, while a major fraction of CCS was imported into peroxisomes in a PTS1-dependent fashion in CHO cells, overexpressed SOD1 remained in the cytoplasm. However, increasing the concentrations of both CCS and SOD1 led to an enrichment of SOD1 in peroxisomes. In contrast, CCS-mediated SOD1 import into peroxisomes was abolished by deletion of the SOD domain of CCS, which is required for heterodimer formation. SOD1/CCS co-import is the first demonstration of a physiologically relevant piggyback import into mammalian peroxisomes.  相似文献   
997.
Changes in precipitation and nitrogen (N) deposition can influence ecosystem carbon (C) cycling and budget in terrestrial biomes, with consequent feedbacks to climate change. However, little is known about the main and interactive effects of water and N additions on net ecosystem C exchange (NEE). In a temperate steppe of northern China, a field-manipulated experiment was conducted to evaluate the responses of NEE and its components to improve N and water availability from 2005 to 2008. The results showed that both water and N additions stimulated gross ecosystem productivity (GEP), ecosystem respiration (ER), and NEE. Water addition increased GEP by 17%, ER by 24%, and NEE by 11% during the experimental period, whereas N addition increased GEP by 17%, ER by 16%, and NEE by 19%. The main effects of both water and N additions changed with time, with the strongest water stimulation in the dry year and a diminishing N stimulation over time. When water and N were added in combination, there were non-additive effects of water and N on ecosystem C fluxes, which could be explained by the changes in species composition and the shifts of limiting resources from belowground (water or N) to aboveground (light). The positive water and N additions effects indicate that increasing precipitation and N deposition in the future will favor C sequestration in the temperate steppe. The non-additive effects of water and N on ecosystem C fluxes suggest that multifactor experiments are better able to capture complex interactive processes, thus improving model simulations and projections.  相似文献   
998.
Among heme-based sensors, recent phylogenomic and sequence analyses have identified 34 globin coupled sensors (GCS), to which an aerotactic or gene-regulating function has been tentatively ascribed. Here, the structural and biochemical characterization of the globin domain of the GCS from Geobacter sulfurreducens (GsGCS162) is reported. A combination of X-ray crystallography (crystal structure at 1.5 Å resolution), UV-vis and resonance Raman spectroscopy reveals the ferric GsGCS162 as an example of bis-histidyl hexa-coordinated GCS. In contrast to the known hexa-coordinated globins, the distal heme-coordination in ferric GsGCS162 is provided by a His residue unexpectedly located at the E11 topological site. Furthermore, UV-vis and resonance Raman spectroscopy indicated that ferrous deoxygenated GsGCS162 is a penta-/hexa-coordinated mixture, and the heme hexa-to-penta-coordination transition does not represent a rate-limiting step for carbonylation kinetics. Lastly, electron paramagnetic resonance indicates that ferrous nitrosylated GsGCS162 is a penta-coordinated species, where the proximal HisF8-Fe bond is severed.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号