首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   35篇
  国内免费   60篇
  2024年   2篇
  2023年   7篇
  2022年   13篇
  2021年   10篇
  2020年   14篇
  2019年   10篇
  2018年   18篇
  2017年   8篇
  2016年   16篇
  2015年   13篇
  2014年   27篇
  2013年   24篇
  2012年   35篇
  2011年   30篇
  2010年   12篇
  2009年   9篇
  2008年   18篇
  2007年   19篇
  2006年   11篇
  2005年   18篇
  2004年   9篇
  2003年   4篇
  2002年   6篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1992年   2篇
  1990年   1篇
排序方式: 共有359条查询结果,搜索用时 15 毫秒
31.
32.
33.
34.
35.
The yeast-to-hypha transition is tightly associated with pathogenicity in many human pathogenic fungi, such as the model fungal pathogen Cryptococcus neoformans, which is responsible for approximately 180,000 deaths annually. In this pathogen, the yeast-to-hypha transition can be initiated by distinct stimuli: mating stimulation or glucosamine (GlcN), the monomer of cell wall chitosan. However, it remains poorly understood how the signal specificity for Cryptococcus morphological transition by disparate stimuli is ensured. Here, by integrating temporal expression signature analysis and phenome-based clustering evaluation, we demonstrate that GlcN specifically triggers a unique cellular response, which acts as a critical determinant underlying the activation of GlcN-induced filamentation (GIF). This cellular response is defined by an unusually hyperactive cell wall synthesis that is highly ATP-consuming. A novel cell surface protein Gis1 was identified as the indicator molecule for the GlcN-induced cell wall response. The Mpk1-directed cell wall pathway critically bridges global cell wall gene induction and intracellular ATP supply, ensuring the Gis1-dependent cell wall response and the stimulus specificity of GIF. We further reveal that the ability of Mpk1 to coordinate the cell wall response and GIF activation is conserved in different Cryptococcus pathogens. Phosphoproteomics-based profiling together with genetic and phenotypic analysis revealed that the Mpk1 kinase mediates the regulatory specificity of GIF through a coordinated downstream regulatory network centered on Skn7 and Crz1. Overall, our findings discover an unprecedented and conserved cell wall biosynthesis-dependent fungal differentiation commitment mechanism, which enables the signal specificity of pathogenicity-related dimorphism induced by GlcN in Cryptococcus pathogens.  相似文献   
36.
The vascular system is precisely regulated to adjust blood flow to organismal demand, thereby guaranteeing adequate perfusion under varying physiological conditions. Mechanical forces, such as cyclic circumferential stretch, are among the critical stimuli that dynamically adjust vessel distribution and diameter, but the precise mechanisms of adaptation to changing forces are unclear. We find that endothelial monolayers respond to cyclic stretch by transient remodeling of the vascular endothelial cadherin–based adherens junctions and the associated actomyosin cytoskeleton. Time-resolved proteomic profiling reveals that this remodeling is driven by calcium influx through the mechanosensitive Piezo1 channel, triggering Rho activation to increase actomyosin contraction. As the mechanical stimulus persists, calcium signaling is attenuated through transient down-regulation of Piezo1 protein. At the same time, filamins are phosphorylated to increase monolayer stiffness, allowing mechanoadaptation to restore junctional integrity despite continuing exposure to stretch. Collectively, this study identifies a biphasic response to cyclic stretch, consisting of an initial calcium-driven junctional mechanoresponse, followed by mechanoadaptation facilitated by monolayer stiffening.  相似文献   
37.
38.

Key message

A total of 204,439 SSR markers were developed in diploid genomes, and 25 QTLs for shelling percentage were identified in a RIL population across 4 years including five consistent QTLs.

Abstract

Cultivated peanut (Arachis hypogaea L.) is an important grain legume providing edible oil and protein for human nutrition. Genome sequences of its diploid ancestors, Arachis duranensis and A. ipaensis, were reported, but their SSRs have not been well exploited and utilized hitherto. Shelling percentage is an important economic trait and its improvement has been one of the major objectives in peanut breeding programs. In this study, the genome sequences of A. duranensis and A. ipaensis were used to develop SSR markers, and a mapping population (Yuanza 9102 × Xuzhou 68-4) with 195 recombinant inbred lines was used to map QTLs controlling shelling percentage. The numbers of newly developed SSR markers were 84,383 and 120,056 in the A. duranensis and A. ipaensis genomes, respectively. Genotyping of the mapping population was conducted with both newly developed and previously reported markers. QTL analysis using the phenotyping data generated in Wuhan across four consecutive years and genotyping data of 830 mapped loci identified 25 QTLs with 4.46–17.01% of phenotypic variance explained in the four environments. Meta-analysis revealed five consistent QTLs that could be detected in at least two environments. Notably, the consistent QTL cqSPA09 was detected in all four environments and explained 10.47–17.01% of the phenotypic variance. The segregation in the progeny of a residual heterozygous line confirmed that the cpSPA09 locus had additive effect in increasing shelling percentage. These consistent and major QTL regions provide opportunity not only for further gene discovery, but also for the development of functional markers for breeding.
  相似文献   
39.

Background  

Aberrant activation of the nuclear factor kappaB (NF-κB) pathway has been previously implicated as a crucial signal promoting tumorigenesis. However, how NF-κB acts as a key regulatory node to modulate global gene expression, and contributes to the malignant heterogeneity of head and neck cancer, is not well understood.  相似文献   
40.

Background  

A large number of genetic variations have been identified in rice. Such variations must in many cases control phenotypic differences in abiotic stress tolerance and other traits. A single feature polymorphism (SFP) is an oligonucleotide array-based polymorphism which can be used for identification of SNPs or insertion/deletions (INDELs) for high throughput genotyping and high density mapping. Here we applied SFP markers to a lingering question about the source of salt tolerance in a particular rice recombinant inbred line (RIL) derived from a salt tolerant and salt sensitive parent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号