首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   26篇
  国内免费   9篇
  203篇
  2023年   4篇
  2022年   5篇
  2021年   6篇
  2020年   8篇
  2019年   11篇
  2018年   11篇
  2017年   12篇
  2016年   6篇
  2015年   10篇
  2014年   10篇
  2013年   14篇
  2012年   12篇
  2011年   12篇
  2010年   13篇
  2009年   8篇
  2008年   8篇
  2007年   10篇
  2006年   5篇
  2005年   8篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有203条查询结果,搜索用时 9 毫秒
111.
桢楠是我国珍稀渐危树种,国家二级保护植物,野生多散生于海拔1500 m以下的亚热带常绿阔叶林中。而喀斯特生境岩石裸露、土壤浅薄贫瘠、岩溶干旱频发,理论上并不适合喜湿耐荫且喜酸性土壤的桢楠生长及幼苗更新。因此重庆市大足区和永川区喀斯特生境中的天然桢楠种群可能存在一定的更新困难。为明确这两个桢楠种群的生存现状及动态特征,采用野外调查法,从径级结构、静态生命表、存活曲线、结构动态及分布格局等方面分析桢楠种群结构及其数量动态规律,以期预测种群未来发展趋势,为喀斯特地区桢楠种群的保护、群落更新及植被恢复提供理论基础。结果表明:(1)大足区桢楠种群的年龄结构趋于稳定型,而永川区桢楠种群的年龄结构为增长型。两地区幼苗充足但死亡率高。(2)静态生命表及相关曲线分析显示,两个桢楠种群存活数量总体上随径级增大而减少;两个桢楠种群的生存期望值在不同径级间存在波动,大足区桢楠种群在第Ⅱ径级而永川区则是第Ⅳ径级期望值最高。(3)两个种群的存活曲线均为Deevey-Ⅲ型,即幼树死亡率较高,并且种群的增长速度较为缓慢。(4)大足区种群为随机分布,永川区种群为集群分布;种群各生长发育阶段均为集群分布,但聚集强度随着龄...  相似文献   
112.
Liao Y  Zhou X  Yu J  Cao Y  Li X  Kuai B 《Plant physiology》2006,142(2):620-628
Transgenic exploitation of bacterial degradative genes in plants has been considered a favorable strategy for degrading organic pollutants in the environment. The aromatic ring characteristic of these pollutants is mainly responsible for their recalcitrance to degradation. In this study, a Plesiomonas-derived chlorocatechol 1,2-dioxygenase (TfdC) gene (tfdC), capable of cleaving the aromatic ring, was introduced into Arabidopsis (Arabidopsis thaliana). Morphology and growth of transgenic plants are indistinguishable from those of wild-type plants. In contrast, they show significantly enhanced tolerances to catechol. Transgenic plants also exhibit strikingly higher capabilities of removing catechol from their media and high efficiencies of converting catechol to cis,cis-muconic acid. As far-less-than-calculated amounts of cis,cis-muconic acid were accumulated within the transgenic plants, existence of endogenous TfdD- and TfdE-like activities was postulated and, subsequently, putative orthologs of bacterial tfdD and tfdE were detected in Arabidopsis. However, no TfdC activity and no putative orthologs of either tfdC or tfdF were identified. This work indicates that the TfdC activity, conferred by tfdC in transgenic Arabidopsis, is a key requirement for phytoremoval and degradation of catechol, and also suggests that microbial degradative genes may be transgenically exploited in plants for bioremediation of aromatic pollutants in the environment.  相似文献   
113.
Replication protein A (RPA) is a conserved heterotrimeric protein complex comprising RPA1, RPA2, and RPA3 subunits involved in multiple DNA metabolism pathways attributable to its single-stranded DNA binding property. Unlike other species possessing a single RPA2 gene, rice (Oryza sativa) possesses three RPA2 paralogs, but their functions remain unclear. In this study, we identified RPA2c, a rice gene preferentially expressed during meiosis. A T-DNA insertional mutant (rpa2c) exhibited reduced bivalent formation, leading to chromosome nondisjunction. In rpa2c, chiasma frequency is reduced by ∼78% compared with the wild type and is accompanied by loss of the obligate chiasma. The residual ∼22% chiasmata fit a Poisson distribution, suggesting loss of crossover control. RPA2c colocalized with the meiotic cohesion subunit REC8 and the axis-associated protein PAIR2. Localization of REC8 was necessary for loading of RPA2c to the chromosomes. In addition, RPA2c partially colocalized with MER3 during late leptotene, thus indicating that RPA2c is required for class I crossover formation at a late stage of homologous recombination. Furthermore, we identified RPA1c, an RPA1 subunit with nearly overlapping distribution to RPA2c, required for ∼79% of chiasmata formation. Our results demonstrate that an RPA complex comprising RPA2c and RPA1c is required to promote meiotic crossovers in rice.  相似文献   
114.
115.
The disorderly distribution of defects in the perovskite or at the grain boundaries, surfaces, and interfaces, which seriously affect carrier transport through the formation of nonradiative recombination centers, hinders the further improvement on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Several defect passivation strategies have been confirmed as an efficient approach for promoting the performance of PSCs. Herein, recent progress in the defect passivation toward efficient perovskite solar cells are summarized, and a classification of common passivation strategies that elaborate the mechanism according to the location of the defects and the type of passivation agent is presented. Finally, this review offers likely prospects for future trends in the development of passivation strategies.  相似文献   
116.

Background

Failure of bioprosthetics is usually caused by calcification of the leaflets as a consequence of high tensile stresses. The stentless valve resembles native mitral valve anatomy, has a flexible leaflet attachment and a suspension at the papillary muscles, and preserves annuloventricular continuity. In this study, the effects of the stentless valve design on leaflet stress were investigated with a finite element model.

Methods

Finite element models of the stentless quadrileaflet mitral valve were created in the close and open configurations. The geometry of the stented trileaflet mitral valve was also analyzed for comparative purposes. Under the designated pressures, the regional stresses were evaluated, and the distributions of stresses were assessed.

Results

Regardless of whether the valve is in the open or close configuration, the maximum first principal stress was significantly lower in the stentless valve than in the stented valve. For the stentless valves, limited stress concentration was discretely distributed in the papillary flaps under both close and open conditions. In contrast, in the stented valve, increased stress concentration was evident at the central belly under the open condition and at the commissural attachment under close condition. In either configuration, the maximum second principal stress was markedly lower in the stentless valve than in the stented valve.

Conclusions

The stentless valve was associated with a significant reduction in leaflet stress and a more homogeneous stress distribution compared to the stented valve. These findings are consistent with recent reports of the clinical effectiveness of the stentless quadrileaflet mitral valve.  相似文献   
117.
麻栎在中国的地理分布及潜在分布区预测   总被引:7,自引:0,他引:7  
基于19个生物气候因子和473个地理分布记录,利用DIVA-GIS软件,分析了麻栎在中国的地理分布与气候的关系及其潜在分布区。结果表明:中国麻栎分布在18°~41°N、91°~123°E之间,其地理分布可划分为6个区,其中横断山脉区、云贵高原区、秦岭巴山区比较集中;分布区跨越7个温度带、3个干湿区、18个气候区,包括9种气候类型;适宜麻栎生长的年均温度为5.1℃~20.7℃,年降雨量为471~1 712.6mm;影响麻栎地理分布的主导因子依次为湿度因子、耐旱能力和温度因子。BIOCLIM模型预测显示,麻栎潜在分布区与实际分布区具有很好的一致性,其最适分布区位于云贵高原中部和秦岭巴山区;在CO2浓度倍增的未来气候情景下,麻栎潜在分布区面积将缩小,且有向北方和高海拔地区扩散的趋势。ROC曲线分析表明,BIOCLIM模型的模拟精度较高(AUC=0.826)。研究结果对于合理经营利用麻栎林具有重要的理论和现实意义。  相似文献   
118.
Plastic pollution is a global concern given its prevalence in aquatic and terrestrial ecosystems. Studies have been conducted on the distribution and impact of plastic pollution in marine ecosystems, but little is known on terrestrial ecosystems. Plastic mulch has been widely used to increase crop yields worldwide, yet the impact of plastic residues in cropland soils to soil health and crop production in the long term remained unclear. In this paper, using a global meta‐analysis, we found that the use of plastic mulch can indeed increase crop yields on average by 25%–42% in the immediate season due to the increase of soil temperature (+8%) and moisture (+17%). However, the unabated accumulation of film residues in the field negatively impacts its physicochemical properties linked to healthy soil and threatens food production in the long term. It has multiple negative impacts on plant growth including crop yield (at the mean rate of ?3% for every additional 100 kg/ha of film residue), plant height (?2%) and root weight (?5%), and soil properties including soil water evaporation capacity (?2%), soil water infiltration rate (?8%), soil organic matter (?0.8%) and soil available phosphorus (?5%) based on meta‐regression. Using a nationwide field survey of China, the largest user of plastic mulch worldwide, we found that plastic residue accumulation in cropland soils has reached 550,800 tonnes, with an estimated 6%–10% reduction in cotton yield in some polluted sites based on current level of plastic residue content. Immediate actions should be taken to ensure the recovery of plastic film mulch and limit further increase in film residue loading to maintain the sustainability of these croplands.  相似文献   
119.
Meiosis is essential for eukaryotic sexual reproduction and important for genetic diversity among individuals. Although a number of genes regulating homologous chromosome pairing and synapsis have been identified in the plant kingdom, their molecular basis remains poorly understood. In this study, we identified a novel gene, PAIR3 ( HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS 3 ), required for homologous chromosome pairing and synapsis in rice. Two independent alleles, designated pair3-1 and pair3-2 , were identified in our T-DNA insertional mutant library which could not form bivalents due to failure of homologous chromosome pairing and synapsis at diakinesis, resulting in sterility in both male and female gametes. Suppression of PAIR3 by RNAi produced similar results to the T-DNA insertion lines. PAIR3 encodes a protein that contains putative coiled-coil motifs, but does not have any close homologs in other organisms. PAIR3 is preferentially expressed in reproductive organs, especially in pollen mother cells and the ovule tissues during meiosis. Our results suggest that PAIR3 plays a crucial role in homologous chromosome pairing and synapsis in meiosis.  相似文献   
120.
Ying W  Hao Y  Zhang Y  Peng W  Qin E  Cai Y  Wei K  Wang J  Chang G  Sun W  Dai S  Li X  Zhu Y  Li J  Wu S  Guo L  Dai J  Wang J  Wan P  Chen T  Du C  Li D  Wan J  Kuai X  Li W  Shi R  Wei H  Cao C  Yu M  Liu H  Dong F  Wang D  Zhang X  Qian X  Zhu Q  He F 《Proteomics》2004,4(2):492-504
Recently, a new coronavirus was isolated from the lung tissue of autopsy sample and nasal/throat swabs of the patients with Severe Acute Respiratory Syndrome (SARS) and the causative association with SARS was determined. To reveal further the characteristics of the virus and to provide insight about the molecular mechanism of SARS etiology, a proteomic strategy was utilized to identify the structural proteins of SARS coronavirus (SARS-CoV) isolated from Vero E6 cells infected with the BJ-01 strain of the virus. At first, Western blotting with the convalescent sera from SARS patients demonstrated that there were various structural proteins of SARS-CoV in the cultured supernatant of virus infected-Vero E6 cells and that nucleocaspid (N) protein had a prominent immunogenicity to the convalescent sera from the patients with SARS, while the immune response of spike (S) protein probably binding with membrane (M) glycoprotein was much weaker. Then, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to separate the complex protein constituents, and the strategy of continuous slicing from loading well to the bottom of the gels was utilized to search thoroughly the structural proteins of the virus. The proteins in sliced slots were trypsinized in-gel and identified by mass spectrometry. Three structural proteins named S, N and M proteins of SARS-CoV were uncovered with the sequence coverage of 38.9, 93.1 and 28.1% respectively. Glycosylation modification in S protein was also analyzed and four glycosylation sites were discovered by comparing the mass spectra before and after deglycosylation of the peptides with PNGase F digestion. Matrix-assisted laser desorption/ionization-mass spectrometry determination showed that relative molecular weight of intact N protein is 45 929 Da, which is very close to its theoretically calculated molecular weight 45 935 Da based on the amino acid sequence deduced from the genome with the first amino acid methionine at the N-terminus depleted and second, serine, acetylated, indicating that phosphorylation does not happen at all in the predicted phosphorylation sites within infected cells nor in virus particles. Intriguingly, a series of shorter isoforms of N protein was observed by SDS-PAGE and identified by mass spectrometry characterization. For further confirmation of this phenomenon and its related mechanism, recombinant N protein of SARS-CoV was cleaved in vitro by caspase-3 and -6 respectively. The results demonstrated that these shorter isoforms could be the products from cleavage of caspase-3 rather than that of caspase-6. Further, the relationship between the caspase cleavage and the viral infection to the host cell is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号