首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15941篇
  免费   1395篇
  国内免费   1661篇
  18997篇
  2024年   37篇
  2023年   230篇
  2022年   578篇
  2021年   873篇
  2020年   660篇
  2019年   754篇
  2018年   721篇
  2017年   531篇
  2016年   688篇
  2015年   1002篇
  2014年   1164篇
  2013年   1289篇
  2012年   1545篇
  2011年   1304篇
  2010年   796篇
  2009年   764篇
  2008年   832篇
  2007年   706篇
  2006年   619篇
  2005年   566篇
  2004年   409篇
  2003年   404篇
  2002年   365篇
  2001年   248篇
  2000年   218篇
  1999年   246篇
  1998年   136篇
  1997年   147篇
  1996年   140篇
  1995年   120篇
  1994年   116篇
  1993年   88篇
  1992年   96篇
  1991年   74篇
  1990年   83篇
  1989年   62篇
  1988年   58篇
  1987年   43篇
  1986年   51篇
  1985年   50篇
  1984年   33篇
  1983年   22篇
  1982年   22篇
  1981年   11篇
  1980年   10篇
  1979年   16篇
  1978年   6篇
  1977年   12篇
  1976年   9篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Adipose triglyceride lipase (ATGL) is a triglyceride hydrolysis lipase and is generally related to lipid metabolism in animals. The ATGL gene was well studied in mammals, however very less was known in birds that differed significantly with mammals for lipid metabolism. In this study, cloning, mRNA real time and association analysis was performed to characterize the ATGL gene in birds. Results showed that the obtained ATGL gene cDNA of parrot, quail, duck were 1,651 bp (NCBI accession number: GQ221784), 1,557 bp (NCBI accession number: GQ221783) and 1,440 bp each, encoded 481-, 482- and 279-amino acid (AA) peptide, respectively. The parrot ATGL (pATGL) gene was found to predominantly express in breast muscle and leg muscle, and very higher ATGL mRNA level was also found in heart, abdominal fat and subcutaneous fat. The quail ATGL (qATGL) gene was also predominantly expressed in breast muscle and leg muscle, and then to a much lesser degree in heart. The duck ATGL (dATGL) gene was found to predominantly express in subcutaneous fat and abdominal fat, quite higher ATGL mRNA was also found in heart, spleen, breast muscle and leg muscle. Blast analyses indicated the high homology of ATGL and its patatin region, and moreover, and the active serine hydrolase motif (“GASAG” for “GXSXG”) and the glycine rich motif (“GCGFLG” for “GXGXXG”) were completely conservative among 14 species. Association analyses showed that c.950+24C>A, c.950+45C>G, c.950+73G>A, c.950+83C>T and c.950+128delA of chicken ATGL gene (cATGL) were all significantly or highly significantly with cingulated fat width (CFW) (P < 0.05 or P < 0.01), and c.777−26C>A, c.950+45C>G, c.950+73G>A and c.950+118C>T were all significantly or highly significantly with pH value of breast muscle (BMPH) (P < 0.05).  相似文献   
72.
73.

Objectives

To characterize a recombinant carbonyl reductase from Saccharomyces cerevisiae (SceCPR1) and explore its use in asymmetric synthesis of (R)-pantolactone [(R)-PL].

Results

The NADPH-dependent SceCPR1 exhibited strict (R)-enantioselectivity and high activity in the asymmetric reduction of ketopantolactone (KPL) to (R)-PL. Escherichia coli, coexpressing SceCPR1 and glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH), was constructed to fulfill efficient NADPH regeneration. During the whole-cell catalyzed asymmetric reduction of KPL, the spontaneous hydrolysis of KPL significantly affected the yield of (R)-PL, which was effectively alleviated by the employment of the substrate constant-feeding strategy. The established whole-cell bioreduction for 6 h afforded 458 mM (R)-PL with the enantiomeric excess value of >99.9% and the yield of 91.6%.

Conclusions

Escherichia coli coexpressing SceCPR1 and EsGDH efficiently catalyzed the asymmetric synthesis of (R)-PL through the substrate constant-feeding strategy.
  相似文献   
74.
75.
Multi-scale experimental work was carried out to characterize cortical bone as a heterogeneous material with hierarchical structure, which spans from nanoscale (mineralized collagen fibril), sub-microscale (single lamella), microscale (lamellar structures), to mesoscale (cortical bone) levels. Sections from femoral cortical bone from 6, 12, and 42 months old swine were studied to quantify the age-related changes in bone structure, chemical composition, and mechanical properties. The structural changes with age from sub-microscale to mesoscale levels were investigated with scanning electron microscopy and micro-computed tomography. The chemical compositions at mesoscale were studied by ash content method and dual energy X-ray absorptiometry, and at microscale by Fourier transform infrared microspectroscopy. The mechanical properties at mesoscale were measured by tensile testing, and elastic modulus and hardness at sub-microscale were obtained using nanoindentation. The experimental results showed age-related changes in the structure and chemical composition of cortical bone. Lamellar bone was a prevalent structure in 6 months and 12 months old animals, resorption sites were most pronounced in 6 months old animals, while secondary osteons were the dominant features in 42 months old animals. Mineral content and mineral-to-organic ratio increased with age. The structural and chemical changes with age corresponded to an increase in local elastic modulus, and overall elastic modulus and ultimate tensile strength as bone matured.  相似文献   
76.
77.
Recent advances in molecular biology have enhanced the opportunity to conduct multipoint mapping for complex diseases. Concurrently, one sees a growing interest in the use of quantitative traits in linkage studies. Here, we present a multipoint sib-pair approach to locate the map position (tau) of a trait locus that controls the observed phenotype (qualitative or quantitative), along with a measure of statistical uncertainty. This method builds on a parametric representation for the expected identical-by-descent statistic at an arbitrary locus, conditional on an event reflecting the sampling scheme, such as affected sib pairs, for qualitative traits, or extreme discordant (ED) sib pairs, for quantitative traits. Our results suggest that the variance about tau&d4;, the estimator of tau, can be reduced by as much as 60%-70% by reducing the length of intervals between markers by one half. For quantitative traits, we examine the precision gain (measured by the variance reduction in tau&d4;) by genotyping extremely concordant (EC) sib pairs and including them along with ED sib pairs in the statistical analysis. The precision gain depends heavily on the residual correlation of the quantitative trait for sib pairs but considerably less on the allele frequency and exact genetic mechanism. Since complex traits involve multiple loci and, hence, the residual correlation cannot be ignored, our finding strongly suggests that one should incorporate EC sib pairs along with ED sib pairs, in both design and analysis. Finally, we empirically establish a simple linear relationship between the magnitude of precision gain and the ratio of the number of ED pairs to the number of EC pairs. This relationship allows investigators to address issues of cost effectiveness that are due to the need for phenotyping and genotyping subjects.  相似文献   
78.
Herpes simplex virus type 1 (HSV-1) is a large, neurotropic, double-stranded DNA virus that establishes a lifelong latent infection in neurons and glial cells. Previous studies reveal that several metabolic perturbations are associated with HSV-1 infection. However, the extracellular metabolic alterations associated with HSV-1 infection have not been systematically profiled in human cells. Here, a proton nuclear magnetic resonance-based metabonomic approach was applied to differentiate the extracellular metabonomic profiles of HSV-1 infected human oligodendroglia cells (n = 18) and matched control cells (n = 18) at three time points (12, 24, and 36 h post-infection). Resulting spectra were analyzed by chemometric and statistical methods. Metabonomic profiling revealed perturbations in 21 extracellular metabolites. Partial least squares discriminant analysis demonstrated that the whole metabolic patterns enabled statistical discrimination between HSV-1 infected human oligodendroglia cells and control cells. Eight extracellular metabolites, seven of which were amino acids, were primarily responsible for score plot discrimination between HSV-1 infected human oligodendroglia cells and control cells at 36 h post-infection: alanine, glycine, isoleucine, leucine, glutamate, glutamine, histidine, and lactate. HSV-1 infection alters amino acid metabolism in human oligodendroglia cells cultured in vitro. HSV-1 infection may disturb these host cellular pathways to support viral replication. Through elucidating the extracellular metabolic changes incident to HSV-1 infection, this study also provides future directions for investigation into the pathogenic mechanism of HSV-1.  相似文献   
79.
Dengue virus (DENV) is still a major threat to human health in most tropical and subtropical countries and regions. In the present study, a multi‐epitope DNA vaccine that encodes 15 immunogenic and conserved HLA‐A*0201‐, HLA‐A*1101‐, HLA‐A*2402‐restricted CTL epitopes from DENV serotype 1 (DENV‐1) was constructed based on the eukaryotic expressing plasmid pcDNATM3.1/mycHis(?) A. Immunization of HLA‐A*0201, HLA‐A*1101 and HLA‐A*2402 transgenic mice with the recombinant plasmid pcDNATM3.1/mycHis(?) A‐DENV‐1‐Meg resulted in significantly greater IFN‐γ‐secreting T‐cell responses against most (14/15) CTL epitopes than occurred in mice immunized with the empty plasmid pcDNATM3.1/mycHis(?) A. Additionally, the epitope‐specific T cells directed to some epitopes secreted not only IFN‐γ but also IL‐6 and/or TNF‐α. Finally, the induced epitope‐specific T cells also efficiently lysed epitope‐pulsed splenocytes and DENV‐1‐infected splenic monocytes. The present study confirms the immunogenicity of multi‐epitope DENV vaccine, suggesting that it may contribute to the development of a universal DENV vaccine.
  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号