首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16552篇
  免费   1249篇
  国内免费   1208篇
  19009篇
  2024年   42篇
  2023年   239篇
  2022年   576篇
  2021年   950篇
  2020年   572篇
  2019年   762篇
  2018年   760篇
  2017年   558篇
  2016年   788篇
  2015年   1040篇
  2014年   1291篇
  2013年   1415篇
  2012年   1510篇
  2011年   1364篇
  2010年   829篇
  2009年   744篇
  2008年   843篇
  2007年   703篇
  2006年   563篇
  2005年   505篇
  2004年   417篇
  2003年   363篇
  2002年   270篇
  2001年   250篇
  2000年   222篇
  1999年   231篇
  1998年   158篇
  1997年   135篇
  1996年   122篇
  1995年   110篇
  1994年   103篇
  1993年   87篇
  1992年   102篇
  1991年   100篇
  1990年   53篇
  1989年   55篇
  1988年   41篇
  1987年   32篇
  1986年   22篇
  1985年   27篇
  1984年   23篇
  1983年   15篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
961.
962.
Antibiotics regulate various physiological functions in cyanobacteria and may interfere with the control of cyanobacterial blooms during the application of algaecides. In this study, Microcystis aeruginosa was exposed to H2O2 and glyphosate for 7 d in the presence of coexisting mixed antibiotics (amoxicillin, spiramycin, tetracycline, ciprofloxacin, and sulfamethoxazole) at an environmentally relevant concentration of 100 ng · L?1. The mixed antibiotics significantly (P < 0.05) alleviated the growth inhibition effect of 15–45 μM H2O2 and 40–60 mg · L?1 glyphosate. According to the increased contents of chlorophyll a and protein, decreased content of malondialdehyde, and decreased activities of superoxide dismutase and glutathione S‐transferase, antibiotics may reduce the toxicity of the two algaecides through the stimulation of photosynthesis and the reduction in oxidative stress. The presence of coexisting antibiotics stimulated the production and release of microcystins in the M. aeruginosa exposed to low concentrations of algaecides and posed an increased threat to aquatic environments. To eliminate the secondary pollution caused by microcystins, high algaecide doses that are ≥45 μM for H2O2 and ≥60 mg · L?1 for glyphosate are recommended. This study provides insights into the ecological hazards of antibiotic contaminants and the best management practices for cyanobacterial removal under combined antibiotic pollution conditions.  相似文献   
963.
Co‐flowering plants may commonly experience interspecific pollination. It remains unknown, however, whether interspecific pollination is a largely stochastic process or consistent enough over years to exert selection for traits that can reduce interspecific pollination or ameliorate its deleterious effects on reproduction. To assess the likelihood of this precondition being met, stigmatic pollen loads on 17–34 insect‐pollinated plant species over three consecutive years were scored in a subalpine meadow in southwestern China. Plant species varied significantly in the amount and proportion of heterospecific pollen (HP) on stigmas. Both the number of HP species and the proportion of the pollen load that was HP for each recipient species correlated positively between years (reflected in pairwise correlations for all year‐by‐year combinations). Although inter‐annual variation was smaller for conspecific pollen (CP) than for HP loads, species tended to experience either consistently high or consistently low HP proportions across years. We found that species with higher stigmatic HP proportions generally experienced lower proportional variation in stigmatic HP, an unexpected result if high HP loads are the result of rare stochastic events. The novel finding of between‐year consistency in stigmatic loads of heterospecific pollen suggests that adaption to stigmatic loads of HP is possible, and two divergent strategies may have evolved: HP avoidance and HP tolerance. The observation of temporally consistent differences among species in levels of HP supports the idea that natural selection may be operating either to increase tolerance or to minimize arrival of heterospecific pollen on stigmas in co‐flowering plants. Such adaptations may be important for the maintenance of high levels of local plant diversity in biodiversity hotspots such as our study area.  相似文献   
964.
Benzo(a)pyrene (BaP) is an endocrine-disrupting pollutant present in various aspects of daily life, and studies have demonstrated that BaP exerts reproductive toxicity. We previously showed that BaP damages endometrial morphology and decreases the number of implantation sites in early pregnant mice, but the mechanisms underlying these effects remain unclear. The endometrial function is crucial for implantation, which is associated with endometrial cell apoptosis. In this study, we focused on the effect of BaP on endometrial cell apoptosis and the role of WNT signaling during this process. Pregnant mice were gavaged with corn oil (control group) or 0.2 mg·kg−1·day −1 BaP (treatment group) from Days 1 to 6 of pregnancy. BaP impaired endometrial function by decreasing the expression of HOXA10 and BMP2, two markers of receptivity and decidualization. WNT5A and β-catenin were activated in the BaP group. BaP affected the expression of apoptosis-related proteins and inhibited the apoptosis of endometrial stromal cells. In vitro, human endometrial stromal cells (HESCs) were treated with different concentrations of BaP (dimethyl sulfoxide (DMSO); 5, 10 µM). WNT5A and β-catenin were also upregulated in the BaP treatment group. HESC apoptosis was restrained by BaP. Inhibiting WNT5A by SFRP5 partially restored the effect of BaP on apoptosis. In summary, these results suggested that BaP exposure during early pregnancy activates WNT5A/β-catenin signaling pathway, which inhibits the endometrial cell apoptosis and potentially destroys endometrial function.  相似文献   
965.
Zhang  Yang  Gao  Xu  Shen  Zongzhuan  Zhu  Chengzhi  Jiao  Zixuan  Li  Rong  Shen  Qirong 《Plant and Soil》2019,439(1-2):553-567
Plant and Soil - Plant growth-promoting rhizobacteria (PGPR) substantially improve plant growth and health, but their effects on the succession of rhizosphere microbiota throughout the growth...  相似文献   
966.
Gao  Y.  Nan  G.  Chi  L. 《Neurophysiology》2019,51(6):400-408
Neurophysiology - Cerebral ischemia/reperfusion (I/R) injury is associated with various cardiovascular and cerebrovascular diseases with high disability, morbidity, and mortality rates. MicroRNAs...  相似文献   
967.
Ligularia dalaolingensis, a new species from Hubei and Hunan, China, is described and illustrated. It belongs to L. sect. Ligularia ser. Speciosae on the basis of its palmate leaf venation, racemose synflorescence and pappus which is slightly shorter than the tube of the tubular corolla. In the series, its closest relatives are assumed to be L. fischeri and L. stenocephala. From L. fischeri, L. dalaolingensis is readily distinguished by smaller basal leaves, shorter synflorescence, narrower involucres and fewer phyllaries and florets; from L. stenocephala, L. dalaolingensis differs by smaller basal leaves, shorter synflorescence as well as broader bracts. A diagnostic key to Chinese species of L. ser. Speciosae with broadly ovate, ovate or ovate‐lanceolate bracts is provided.  相似文献   
968.
In animals, the Sep15 protein participates in disease resistance, growth, and development, but the function of its plant homologues remains unclear. Here, the function of maize Sep15 was analysed by characterization of two independent Sep15‐like loss‐of‐function mutants. In the absence of ZmSep15‐like, seedling tolerance to both water and salinity stress was compromised. The mutants experienced a heightened level of endoplasmic reticulum stress, and over‐accumulated reactive oxygen species, resulting in leaf necrosis. Characterization of Arabidopsis thaliana atsep15 mutant as well as like with ectopic expression of ZmSep15‐like indicated that ZmSep15‐like contributed to tolerance of both osmotic and salinity stress. ZmSep15‐like interacted physically with UDP‐glucose: glycoprotein glucosyltransferase1 (UGGT1). When the interaction was disrupted, the response to both osmotic and salinity stresses was impaired in maize or Arabidopsis. Co‐expressing ZmUGGT1 and ZmUGGT2 enhanced the tolerance of Athaliana to both stressors, indicating a functional interaction between them. Together, the data indicated that plants Sep15‐like proteins promote osmotic and salinity stress resistance by influencing endoplasmic reticulum stress response and reactive oxygen species level.  相似文献   
969.
Microbially induced calcite precipitation (MICP) can reduce the permeability of soil by reducing the pore volumes. A MICP-based soil improvement method to control water leakage in irrigation channels and reservoirs built on sandy soil grounds is presented in this article. Using this method, a low-permeable hard crust can be formed at the soil surfaces. An experimental study was carried out to evaluate the effect of this method. Sandy soil samples were treated using four different schemes, namely, (1) surface spray, (2) surface spray with the addition of fibers, (3) surface spray and bulk stabilization, and (4) immersion stabilization. By applying around 2.6?L treatment liquid (consisting of ureolytic bacteria, 0.5?mol/L calcium chloride and 0.5?mol/L urea) to the top 2-cm thick soil, the seepage rates of the samples treated by the four different schemes could be reduced by up to 379 times. The conversion rates of calcium source in the tests were up to 89.7%. The results showed that a method of treating the soil in bulk before the formation of a crust on top of the soil layer was effective in reducing the seepage rates. After the bio-treatment, the formed low-permeable hard crust layer was 10 to 20?mm thick with a calcite content higher than 5%. Below the hard crusts, the calcite content was less than 5% and the soil was not properly cemented. Using the mercury intrusion test, it was found that both pore volumes and pore sizes of the bio-treated soil reduced significantly as compared with the untreated soil. Penetration tests using a flat-bottom penetrometer were used to assess the mechanical behavior of the bio-treated soil. The results indicated that the penetration resistance of the bio-treated soil layer was much higher than that of the untreated soil.  相似文献   
970.
In this study, the denitrification performance of the mixotrophic biological reactor was investigated under varying Fe(II)/Mn(II) molar ratio conditions. Results indicate that the optimal nitrate removal ratio occurred at an Fe(II)/Mn(II) molar ratio of 9:1, pH of 7, with an HRT of 10?h. When the reactor was performing under optimal conditions, the nitrate removal reached 100.00% at a rate of 0.116?mmol·L?1·h?1. The proportion of oxidized Fe(II) and Mn(II) reached 99.29% and 21.88%, respectively. High-throughput sequencing results show that Pseudomonas was the dominant species in the mixotrophic biological reactor. Furthermore, the relative abundance of Pseudomonas and denitrification performance was significantly influenced by variation in the Fe(II)/Mn(II) molar ratio.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号