首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14633篇
  免费   1259篇
  国内免费   1436篇
  2024年   62篇
  2023年   257篇
  2022年   588篇
  2021年   912篇
  2020年   617篇
  2019年   712篇
  2018年   717篇
  2017年   537篇
  2016年   674篇
  2015年   969篇
  2014年   1106篇
  2013年   1118篇
  2012年   1411篇
  2011年   1218篇
  2010年   748篇
  2009年   687篇
  2008年   721篇
  2007年   644篇
  2006年   518篇
  2005年   475篇
  2004年   419篇
  2003年   355篇
  2002年   300篇
  2001年   221篇
  2000年   208篇
  1999年   181篇
  1998年   141篇
  1997年   133篇
  1996年   91篇
  1995年   85篇
  1994年   105篇
  1993年   55篇
  1992年   67篇
  1991年   62篇
  1990年   35篇
  1989年   43篇
  1988年   22篇
  1987年   23篇
  1986年   20篇
  1985年   26篇
  1984年   8篇
  1983年   11篇
  1982年   12篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1975年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Scorpion toxin Ctri9577, as a potent Kv1.3 channel blocker, is a new member of the α-KTx15 subfamily which are a group of blockers for Kv4.x potassium channels. However, the pharmacological function of Ctri9577 for Kv4.x channels remains unknown. Scorpion toxin Ctri9577 was found to effectively inhibit Kv4.3 channel currents with IC50 value of 1.34 ± 0.03 μM. Different from the mechanism of scorpion toxins as the blocker recognizing channel extracellular pore entryways, Ctri9577 was a novel gating modifier affecting voltage dependence of activation, steady-state inactivation, and the recovery process from the inactivation of Kv4.3 channel. However, Ctri9755, as a potent Kv1.3 channel blocker, was found not to affect voltage dependence of activation of Kv1.3 channel. Interestingly, pharmacological experiments indicated that 1 μM Ctri9755 showed less inhibition on Kv4.1 and Kv4.2 channel currents. Similar to the classical gating modifier of spider toxins, Ctri9577 was shown to interact with the linker between the transmembrane S3 and S4 helical domains through the mutagenesis experiments. To the best of our knowledge, Ctri9577 was the first gating modifier of potassium channels among scorpion toxin family, and the first scorpion toxin as both gating modifier and blocker for different potassium channels. These findings further highlighted the structural and functional diversity of scorpion toxins specific for the potassium channels.  相似文献   
992.
EphA2 is a receptor tyrosine kinase (RTK) that is sensitive to spatial and mechanical aspects of the cell’s microenvironment. Misregulation of EphA2 occurs in many aggressive cancers. Although its juxtacrine signaling geometry (EphA2’s cognate ligand ephrinA1 is expressed on the surface of an apposing cell) provides a mechanism by which the receptor may experience extracellular forces, this also renders the system challenging to decode. By depositing living cells on synthetic supported lipid membranes displaying ephrinA1, we have reconstituted key features of the juxtacrine EphA2-ephrinA1 signaling system while maintaining the ability to perturb the spatial and mechanical properties of the membrane-cell interface with precision. In addition, we developed a trans-endocytosis assay to monitor internalization of ephrinA1 from a supported membrane into the apposing cell using a quantitative three-dimensional fluorescence microscopy assay. Using this experimental platform to mimic a cell-cell junction, we found that the signaling complex is not efficiently internalized when lateral reorganization at the membrane-cell contact sites is physically hindered. This suggests that EphA2-ephrinA1 trans-endocytosis is sensitive to the mechanical properties of a cell’s microenvironment and may have implications in physical aspects of tumor biology.  相似文献   
993.
DNA CpG methylation has been associated with chromatin compaction and gene silencing. Whether DNA methylation directly contributes to chromatin compaction remains an open question. In this study, we used fluorescence fluctuation spectroscopy (FFS) to evaluate the compaction and aggregation of tetra-nucleosomes containing specific CpG patterns and methylation levels. The compactness of both unmethylated and methylated tetra-nucleosomes is dependent on DNA sequences. Specifically, methylation of the CpG sites located in the central dyad and the major grooves of DNA seem to have opposite effects on modulating the compactness of tetra-nucleosomes. The interactions among tetra-nucleosomes, however, seem to be enhanced because of DNA methylation independent of sequence contexts. Our finding can shed light on understanding the role of DNA methylation in determining nucleosome positioning pattern and chromatin compactness.  相似文献   
994.
Lu Tian 《Biometrics》2014,70(3):710-713
  相似文献   
995.
The photodynamic antimicrobial chemotherapy as a promising approach for efficiently killing pathogenic microbes is attracting increasing interest. In this study, the cytotoxic and phototoxic effects of hematoporphyrin monomethyl ether (HMME) on the Gram-positive and Gram-negative bacteria were investigated. The cell viability was assessed by colony-forming unit method, and the results indicated that there was no significant cytotoxicity but high phototoxicity in the examined concentrations. Notably, the Gram-positive bacteria were more sensitive to HMME in phototoxicity. Simultaneously, an atomic force microscope (AFM) was used to detect the changes in morphological and nanomechanical properties of bacteria before and after HMME treatment. AFM images indicate that upon photoinactivation, the bacterial surface changed from a smooth, homogeneous architecture to a heterogenous, crackled morphology. The force spectroscopy measurements reveal that the cell wall became less rigid and the Young’s modulus decreased about 50%, whereas the tip-cell-surface adhesion forces increased significantly compared to those of native cells. It was speculated that the photodynamic effects of HMME induced the changes in the chemical composition of the outer membrane and exposure of some proteins inside the envelope. AFM can be utilized as a powerful and sensitive method for studying the interaction between bacteria and drugs.  相似文献   
996.
Traditional methods for identifying food-borne pathogens are time-consuming and laborious, so it is necessary to develop innovative methods for the rapid identification of food-borne pathogens. Here, we report the development of silicon-based optical thin-film biosensor chips for sensitive detection of 11 food-borne pathogens. Briefly, aldehyde-labeled probes were arrayed and covalently attached to a hydrazine-derivatized chip surface, and then, biotinylated polymerase chain reaction (PCR) amplicons were hybridized with the probes. After washing and brief incubation with an antibiotin immunoglobulin G–horseradish peroxidase conjugate and a precipitable horseradish peroxidase substrate, biotinylated chains bound to the probes were visualized as a color change on the chip surface (gold to blue/purple). Highly sensitive and accurate examination of PCR fragment targets can be completed within 30 min. This assay is extremely robust, sensitive, specific, and economical and can be adapted to different throughputs. Thus, a rapid, sensitive, and reliable technique for detecting 11 food-borne pathogens was successfully developed.  相似文献   
997.
Hypoxia/reoxygenation (H/R)‐induced injury is the key factor associated with islet graft dysfunction. This study aims to examine the effect of mesenchymal stem cells (MSCs) on islet survival and insulin secretion under H/R conditions. Islets from rats were isolated, purified, cultured with or without MSCs, and exposed to hypoxia (O2 ≤ 1%) for 8 h and reoxygenation for 24 and 48 h, respectively. Islet function was evaluated by measuring basal and glucose‐stimulated insulin secretion (GSIS). Apoptotic islet cells were quantified using Annexin V‐FITC. Anti‐apoptotic effects were confirmed by mRNA expression analysis of hypoxia‐resistant molecules, HIF‐1α, HO‐1, and COX‐2, using semi‐quantitative retrieval polymerase chain reaction (RT‐PCR). Insulin expression in the implanted islets was detected by immunohistological analysis. The main results show that the stimulation index (SI) of GSIS was maintained at higher levels in islets co‐cultured with MSCs. The MSCs protected the islets from H/R‐induced injury by decreasing the apoptotic cell ratio and increasing HIF‐1α, HO‐1, and COX‐2 mRNA expression. Seven days after islet transplantation, insulin expression in the MSC‐islets group significantly differed from that of the islets‐alone group. We proposed that MSCs could promote anti‐apoptotic gene expression by enhancing their resistance to H/R‐induced apoptosis and dysfunction. This study provides an experimental basis for therapeutic strategies based on enhancing islet function. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
998.
999.
We have previously reported that the increase in c-Jun expression induced by quercetin inhibited androgen receptor (AR) transactivation, and Sp1 was involved in quercetin-mediated downregulation of AR activity. Transient transfection assays in this work revealed that co-expression of c-Jun quenched Sp1-induced production of luciferase activity driven by AR promoter or three copies of Sp1 binding elements in the AR promoter. Moreover, c-Jun repressed AR-mediated luciferase activity via androgen-response elements (AREs) of the hK2 gene, while this suppression could be restored partially by cotransfection of Sp1 expression plasmid. The physical associations of c-Jun, Sp1, and AR induced by quercetin were further demonstrated by co-immunoprecipitation experiments. In addition, quercetin-mediated repression of AR expression and activity was partially reversed by blocking of JNK signaling pathway. These results suggested that c-Jun might play an important role in the suppression of AR expression and activity in the presence of quercetin, and association of a c-Jun/Sp1/AR protein complex induced by quercetin represented a novel mechanism that was involved in down-regulation of the AR function in prostate cancer cells.  相似文献   
1000.
MicroRNAs (miRNAs) have a profound impact on cell processes, including proliferation, apoptosis, and stress responses. We aimed to explore the role of antisense oligonucleotide (ASO) to induce proliferation or apoptosis of A549 cancer cells by inhibiting the expression of miRNAs. After A549/HBE/293T cells were treated with ASO, cells proliferation/apoptosis, and their relevant oncogenes/tumor suppressor genes were detected by light and electron microscopy, real-time PCR, enzyme-linked immunosorbent assay, etc. The results showed that ASO could inhibit the expression of miRNAs effectively. miR-16, miR-17, miR-34a–c, and miR-125 served as tumor suppressor miRNAs, while miR-20, miR-106, and miR-150 acted as oncogenic miRNAs. Our results also indicated that miR-16/34a–c, miR-17-5p, miR-125, miR-106, and miR-150 were the upstream factors, which could regulate the expression of BCL-2, E2F1, E2F3, RB1, and P53, respectively. After A549 cells treated with ASO for 24 h and different concentrations of anti-cancer drug (cisplatin or demethylcantharidin) were added into culture medium, the results indicated the percentage of alive cells in group treated with both ASO-106 (or ASO-150) and anti-cancer drug was lower than that in group treated with ASO, or anti-cancer drug, or both ASO-16 (or ASO-34a) and anti-cancer drug. In conclusion, ASO (specific to oncogenic miRNAs) could induce A549 cells apoptosis by inhibiting oncogenic miRNAs, and could increase chemotherapy sensitivity of A549 cells to anti-cancer drug, which holds great promise to lung cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号