全文获取类型
收费全文 | 7728篇 |
免费 | 729篇 |
国内免费 | 780篇 |
专业分类
9237篇 |
出版年
2024年 | 27篇 |
2023年 | 106篇 |
2022年 | 288篇 |
2021年 | 400篇 |
2020年 | 300篇 |
2019年 | 357篇 |
2018年 | 373篇 |
2017年 | 275篇 |
2016年 | 362篇 |
2015年 | 511篇 |
2014年 | 578篇 |
2013年 | 588篇 |
2012年 | 753篇 |
2011年 | 630篇 |
2010年 | 380篇 |
2009年 | 379篇 |
2008年 | 389篇 |
2007年 | 360篇 |
2006年 | 281篇 |
2005年 | 281篇 |
2004年 | 298篇 |
2003年 | 249篇 |
2002年 | 216篇 |
2001年 | 164篇 |
2000年 | 138篇 |
1999年 | 105篇 |
1998年 | 76篇 |
1997年 | 64篇 |
1996年 | 50篇 |
1995年 | 38篇 |
1994年 | 44篇 |
1993年 | 26篇 |
1992年 | 32篇 |
1991年 | 37篇 |
1990年 | 14篇 |
1989年 | 16篇 |
1988年 | 10篇 |
1987年 | 10篇 |
1986年 | 12篇 |
1985年 | 8篇 |
1984年 | 2篇 |
1983年 | 3篇 |
1982年 | 5篇 |
1981年 | 1篇 |
1980年 | 1篇 |
排序方式: 共有9237条查询结果,搜索用时 15 毫秒
11.
Sasado T Morinaga C Niwa K Shinomiya A Yasuoka A Suwa H Hirose Y Yoda H Henrich T Deguchi T Iwanami N Watanabe T Kunimatsu S Osakada M Okamoto Y Kota Y Yamanaka T Tanaka M Kondoh H Furutani-Seiki M 《Mechanisms of development》2004,121(7-8):817-828
The development of germ cells has been intensively studied in Medaka (Oryzias latipes). We have undertaken a large-scale screen to identify mutations affecting the development of primordial germ cells (PGCs) in Medaka. Embryos derived from mutagenized founder fish were screened for an abnormal distribution or number of PGCs at embryonic stage 27 by RNA in situ hybridization for the Medaka vasa homologue (olvas). At this stage, PGCs coalesce into two bilateral vasa-expressing foci in the ventrolateral regions of the trunk after their migration and group organization. Nineteen mutations were identified from a screen corresponding to 450 mutagenized haploid genomes. Eleven of the mutations caused altered PGC distribution. Most of these alterations were associated with morphological abnormalities and could be grouped into four phenotypic classes: Class 1, PGCs dispersed into bilateral lines; Class 2, PGCs dispersed in a region more medial than that in Class 1; Class 3, PGCs scattered laterally and over the yolk sac area; and Class 4, PGCs clustered in a single median focus. Eight mutations caused a decrease in the number of PGCs. This decrease was observed in the offspring of heterozygous mothers, indicating the contribution of a maternal factor in determining PGC abundance. Taken together, these mutations should prove useful in identifying molecular mechanisms underlying the early PGC development and migration. 相似文献
13.
Whitehead SE Jones KW Zhang X Cheng X Terns RM Terns MP 《The Journal of biological chemistry》2002,277(50):48087-48093
Deletion or mutation of the SMN1 (survival of motor neurons) gene causes the common, fatal neuromuscular disease spinal muscular atrophy. The SMN protein is important in small nuclear ribonucleoprotein (snRNP) assembly and interacts with snRNP proteins via arginine/glycine-rich domains. Recently, SMN was also found to interact with core protein components of the two major families of small nucleolar RNPs, fibrillarin and GAR1, suggesting that SMN may also function in the assembly of small nucleolar RNPs. Here we present results that indicate that the interaction of SMN with GAR1 is mediated by the Tudor domain of SMN. Single point mutations within the Tudor domain, including a spinal muscular atrophy patient mutation, impair the interaction of SMN with GAR1. Furthermore, we find that either of the two arginine/glycine-rich domains of GAR1 can provide for interaction with SMN, but removal of both results in loss of the interaction. Finally, we have found that unlike the interaction of SMN with the Sm snRNP proteins, interaction with GAR1 and fibrillarin is not enhanced by arginine dimethylation. Our results argue against post-translational arginine dimethylation as a general requirement for SMN recognition of proteins bearing arginine/glycine-rich domains. 相似文献
14.
Diao Y Guo X Li Y Sun K Lu L Jiang L Fu X Zhu H Sun H Wang H Wu Z 《Cell Stem Cell》2012,11(2):231-241
In mouse skeletal muscles, Pax7 uniquely marks muscle satellite cells and plays some important yet unknown functions at the perinatal stage. To elucidate its in vivo functions, we initiated a yeast two-hybrid screening to look for Pax7-interacting proteins and identified a previously uncharacterized Pax7- and Pax3-binding protein (Pax3/7BP). Pax3/7BP is a ubiquitously expressed nuclear protein, enriched in Pax7+ muscle precursor cells (MPCs), and serves as an indispensable adaptor for Pax7 to recruit the histone 3 lysine 4 (H3K4) methyltransferase (HMT) complex by bridging Pax7 and Wdr5. Knockdown of Pax3/7BP abolished the Pax3/7-associated H3K4 HMT activity and inhibited the proliferation of Pax7+ MPCs from young mice both in culture and in vivo. Id3 and Cdc20 were direct target genes of Pax7 and Pax3/7BP involved in the proliferation of Pax7+ MPCs. Collectively, our work establishes Pax3/7BP as an essential adaptor linking Pax3/7 with the H3K4 HMT to regulate the proliferation of MPCs. 相似文献
15.
Neurovascular injury comprises a wide spectrum of pathophysiology that underlies the progression of brain injury after cerebral
ischemia. Recently, it has been shown that activation of the integrin-associated protein CD47 mediates the development of
blood–brain barrier injury and edema after cerebral ischemia. However, the mechanisms that mediate these complex neurovascular
effects of CD47 remain to be elucidated. Here, we compare the effects of CD47 signaling in brain endothelial cells, astrocytes,
and pericytes. Exposure to 4N1 K, a specific CD47-activating peptide derived from the major CD47 ligand thrombospondin-1,
upregulated two major neurovascular mediators, vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9),
in brain endothelial cells and astrocytes. No changes were detected in pericytes. These findings may provide a potential mechanism
for CD47-induced changes in blood–brain barrier homeostasis, and further suggest that CD47 may be a relevant neurovascular
target in stroke. 相似文献
16.
17.
Ying‐Ying Wang Bao‐Hua Hou Jin‐Zhi Guo Qiu‐Li Ning Wei‐Lin Pang Jiawei Wang Chang‐Li Lü Xing‐Long Wu 《Liver Transplantation》2018,8(18)
Presently, commercialization of sodium‐ion batteries (SIBs) is still hindered by the relatively poor energy‐storage performance. In addition, low‐temperature (low‐T) Na storage is another principal concern for the wide application of SIBs. Unfortunately, the Na‐transfer kinetics is extremely sluggish at low‐T, as a result, there are few reports on low‐T SIBs. Here, an advanced low‐T sodium‐ion full battery (SIFB) assembled by an anode of 3D Se/graphene composite and a high‐voltage cathode (Na3V2(PO4)2O2F) is developed, exhibiting ultralong lifespan (over even 15 000 cycles, the capacity retention is still up to 86.3% at 1 A g?1), outstanding low‐T energy storage performance (e.g., all values of capacity retention are >75% after 1000 cycles at temperatures from 25 to ?25 °C at 0.4 A g?1), and high‐energy/power properties. Such ultralong lifespan signifies that the developed sodium‐ion full battery can be used for longer than 60 years, if batteries charge/discharge once a day and 80% capacity retention is the standard of battery life. As a result, the present study not only promotes the practicability and commercialization of SIBs but also points out the new developing directions of next‐generation energy storage for wider range applications. 相似文献
18.
Heterotetrameric sarcosine oxidase is a flavoprotein that catalyses the oxidative demethylation of sarcosine. It is thought that the dehydrogenated substrate is the anionic form of sarcosine. To verify this assumption, the rate of flavin-adenine dinucleotide (FAD) reduction (k(red)) was analysed using protiated and deuterated sarcosine (N-methyl-d(3)-Gly) at various pH values using stopped-flow method. By increasing the pH from 6.2 to 9.8, k(red) increased for both substrates and reached a plateau, but the pK(a) value (reflecting the ionization of the enzyme-substrate complex) was 6.8 and 7.1 for protiated and deuterated sarcosine, respectively, and the kinetic isotope effect of k(red) decreased from approximately 19 to 8, indicating deprotonation of the bound sarcosine. The k(red)/K(d) (K(d), sarcosine dissociation constant) increased with increasing pH and reached a plateau. The pK (reflecting the ionization of free enzyme or free sarcosine) was 7.0 for both substrates, suggesting deprotonation of the βLys358 residue, which has a pK(a) of 6.7, as the pK(a) of the free sarcosine amine proton was determined to be approximately 10.1. These results indicate that the amine proton of sarcosine is transferred to the unprotonated Lys residue in the enzyme-substrate complex. 相似文献
19.
Tao Fang Wang Heng Wang Ai Fen Peng Qing Feng Luo Zhi Li Liu Rong Ping Zhou Song Gao Yang Zhou Wen Zhao Chen 《Biochemical and biophysical research communications》2013
FASN plays an important role in the malignant phenotype of various tumors. Our previous studies show that inhibition FASN could induce apoptosis and inhibit proliferation in human osteosarcoma (OS) cell in vivo and vitro. The aim in this study was to investigate the effect of inhibition FASN on the activity of HER2/PI3K/AKT axis and invasion and migration of OS cell. The expression of FASN, HER2 and p-HER2(Y1248) proteins was detected by immunohistochemistry in OS tissues from 24 patients with pulmonary metastatic disease, and the relationship between FASN and p-HER2 as well as HER2 was investigated. The results showed that there was a positive correlation between FASN and HER2 as well as p-HER2 protein expression. The U-2 OS cells were transfected with either the FASN specific RNAi plasmid or the negative control RNAi plasmid. FASN mRNA was measured by RT-PCR. Western blot assays was performed to examine the protein expression of FASN, HER2, p-HER2(Y1248), PI3K, Akt and p-Akt (Ser473). Migration and invasion of cells were investigated by wound healing and transwell invasion assays. The results showed that the activity of HER2/PI3K/AKT signaling pathway was suppressed by inhibiting FASN. Meanwhile, the U-2OS cells migration and invasion were also impaired by inhibiting the activity of FASN/HER2/PI3K/AKT. Our results indicated that inhibition of FASN suppresses OS cell invasion and migration via down-regulation of the “HER2/PI3K/AKT” axis in vitro. FASN blocker may be a new therapeutic strategy in OS management. 相似文献
20.