首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32673篇
  免费   16029篇
  国内免费   827篇
  2024年   28篇
  2023年   136篇
  2022年   395篇
  2021年   818篇
  2020年   2446篇
  2019年   4036篇
  2018年   4102篇
  2017年   4337篇
  2016年   4401篇
  2015年   4470篇
  2014年   4160篇
  2013年   4636篇
  2012年   2453篇
  2011年   2078篇
  2010年   3359篇
  2009年   2122篇
  2008年   1032篇
  2007年   573篇
  2006年   501篇
  2005年   561篇
  2004年   510篇
  2003年   465篇
  2002年   426篇
  2001年   395篇
  2000年   310篇
  1999年   236篇
  1998年   88篇
  1997年   79篇
  1996年   47篇
  1995年   50篇
  1994年   55篇
  1993年   36篇
  1992年   50篇
  1991年   36篇
  1990年   17篇
  1989年   19篇
  1988年   10篇
  1987年   11篇
  1986年   15篇
  1985年   10篇
  1984年   2篇
  1983年   4篇
  1982年   6篇
  1981年   1篇
  1979年   2篇
  1976年   1篇
  1889年   1篇
  1882年   1篇
  1881年   1篇
  1873年   1篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
991.
Human-induced pluripotent stem cell-derived vascular smooth muscle cells (hiPSC-VSMCs) with proangiogenic properties have huge therapeutic potential. While hiPSC-VSMCs have already been utilized for wound healing using a biomimetic collagen scaffold, an in situ forming hydrogel mimicking the native environment of skin offers the promise of hiPSC-VSMC mediated repair and regeneration. Herein, the impact of a collagen type-I-hyaluronic acid (HA) in situ hydrogel cross-linked using a polyethylene glycol-based cross-linker on hiPSC-VSMCs viability and proangiogenic paracrine secretion was investigated. Our study demonstrated increases in cell viability, maintenance of phenotype and proangiogenic growth factor secretion, and proangiogenic activity in response to the conditioned medium. The optimally cross-linked and functionalized collagen type-I/HA hydrogel system developed in this study shows promise as an in situ hiPSC-VSMC carrier system for wound regeneration.  相似文献   
992.
Mesenchymal stem cells (MSCs) have been proved to exert considerable therapeutic effects on ischemia-reperfusion (I/R)-induced injury, but the underlying mechanism remains unknown. In this study, we aimed to explore the potential molecular mechanism underlying the therapeutic effect of MSCs-derived exosome reinforced with miR-20a in reversing liver I/R injury. Quantitative real-time polymerase chain reaction, Western blot, and IHC were carried out to compare the differential expressions of miR-20a, Beclin-I, FAS, Caspase-3, mTOR and P62 in IR rats and normal rats. TUNEL was performed to assess IR-induced apoptosis in IR rats, and luciferase assay was used to confirm the inhibitory effect of miR-20a on Beclin-I and FAS expression. Among the 12 candidate microRNAs (miRNAs), miR-486, miR-25, miR-24, miR-20a,miR-466 and miR-433-3p were significantly downregulated in I/R. In particular, miR-20a, a miRNA highly expressed in umbilical cord-derived mesenchymal stem cells, was proved to bind to the 3ʹ UTR of Beclin-I and FAS to exert an inhibitory effect on their expressions. Since Beclin-I and FAS were aberrantly upregulated in IR, exosomes separated from UC-MSCs showed therapeutic efficacy in reversing I/R induced apoptosis. In addition, exosomes reinforced with miR-20a and separated from UC-MSCs almost fully alleviated I/R injury. Furthermore, our results showed that miR-20a could alleviate the abnormal expression of genes related to apoptosis and autophagy, such as active Caspase-3, mTOR, P62, and LC3II. This study presented detailed evidence to clarify the mechanism underlying the therapeutic efficacy of UC-MSCs in the treatment of I/R injury.  相似文献   
993.
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer death worldwide. As a platinum-based chemotherapeutic drug, cisplatin has been used for over 30 years in NSCLC treatment while its effects are diminished by drug resistance. Therefore, we aimed to study the potential role of UCA1 in the development of chemoresistance against cisplatin. Real-time polymerase chain reaction, western-blot analysis, and immunofluorescence were used to study the involvement of UCA1, miR-495, and NRF2 in chemoresistance against cisplatin. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to determine the effect of cisplatin on cell proliferation. Computational analysis and luciferase assay were carried out to explore the interaction among UCA1, miR-495, and NRF2. The cisplatin-R group exhibited lower levels of UCA1 and NRF2 expression but a higher level of miR-495 expression than the cisplatin-S group. The growth rate and half-maximal inhibitory concentration of cellular dipeptidyl peptidase (cisplatinum) of the cisplatin-R group were much higher than those in the cisplatin-S group. MiR-495 contained a complementary binding site of UCA1, and the luciferase activity of wild-type UCA1 was significantly reduced after the transfection of miR-495 mimics. MiR-495 directly targeted the 3′-untranslated region (3′-UTR) of NRF2, and the luciferase activity of wild-type NRF2 3′-UTR was evidently inhibited by miR-495 mimics. Finally, UCA1 and NRF2 expressions in the effective group were much lower than that in the ineffective group, along with a much higher level of miR-495 expression. We suggested for the first time that high expression of UCA1 contributed to the development of chemoresistance to cisplatin through the UCA1/miR-495/NRF2 signaling pathway.  相似文献   
994.
995.
Head and neck squamous cell carcinoma (HNSCC) is a common malignancy with high mortality and poor prognosis due to a lack of predictive markers. Increasing evidence has demonstrated small nucleolar RNAs (snoRNAs) play an important role in tumorigenesis. The aim of this study was to identify a prognostic snoRNA signature of HNSCC. Survival-related snoRNAs were screened by Cox regression analysis (univariate, least absolute shrinkage and selection operator, and multivariate). The predictive value was validated in different subgroups. The biological functions were explored by coexpression analysis and gene set enrichment analysis (GSEA). One hundred and thirteen survival-related snoRNAs were identified, and a five-snoRNA signature predicted prognosis with high sensitivity and specificity. Furthermore, the signature was applicable to patients of different sexes, ages, stages, grades, and anatomic subdivisions. Coexpression analysis and GSEA revealed the five-snoRNA are involved in regulating malignant phenotype and DNA/RNA editing. This five-snoRNA signature is not only a promising predictor of prognosis and survival but also a potential biomarker for patient stratification management.  相似文献   
996.
Excessive osteoclast recruitment and activation is the chief cause of periprosthetic osteolysis and subsequent aseptic loosening, so blocking osteolysis may be useful for protecting against osteoclastic bone resorption. We studied the effect of aspirin on titanium (Ti)-particle-induced osteolysis in vivo and in vitro using male C57BL/6J mice randomized to sham (sham surgery), Ti (Ti particles), low-dose aspirin (Ti/5 mg·kg−1·d−1 aspirin), and high-dose aspirin (Ti/30 mg·kg−1·d−1 aspirin). After 2 weeks, a three-dimensional reconstruction evaluation using micro-computed tomography and histomorphology assessment were performed on murine calvariae. Murine hematopoietic macrophages and RAW264.7 lineage cells were studied to investigate osteoclast formation and function. Aspirin attenuated Ti-particle-induced bone erosion and reduced osteoclasts. In vitro, aspirin suppressed osteoclast formation, osteoclastic-related gene expression, and osteoclastic bone erosion in a dose-dependent manner. Mechanically, aspirin reduced osteoclast formation by suppressing receptor activator of nuclear factor kappa-B ligand-induced activation of extracellular signal-related kinase, p-38 mitogen-activated protein kinase, and c-Jun N-terminal kinase. Thus, aspirin may be a promising option for preventing and curing osteoclastic bone destruction, including peri-implant osteolysis.  相似文献   
997.
As a polyphenolic compound, resveratrol (Res) is widely present in a variety of plants. Previous studies have shown that Res can inhibit various tumors. However, its role in c remains largely unexplored. In the present study, we first demonstrated that Res inhibited cell viability and induced apoptosis of glioblastoma A172 cell. Further experiments showed that Res induced mitochondrial dysfunction and activated the activity of caspase-9. Functional studies have found that Res treatment is associated with an increase in the expression of Pak2. Interestingly, inhibition of Pak2 could further augment the proapoptotic effect of Res. Mechanistically, Pak2 inhibition induced reactive oxygen species overproduction, mitochondria-JNK pathway activation, and AMPK-YAP axis suppression. However, overexpression of YAP could abolish the anticancer effects of Res and Pak2 inhibition, suggesting a necessary role played by the AMPK-YAP pathway in regulating cancer-suppressive actions of Res and Pak2 inhibition. Altogether, our results indicated that Res in combination with Pak2 inhibition could further enhance the anticancer property of Res and this effect is mediated via the AMPK-YAP pathway.  相似文献   
998.
Breast carcinoma is one of the most commonly diagnosed tumors and also one of the deadliest cancers in the female. Long noncoding RNAs (lncRNAs) are emerging as novel targets and biomarkers for breast cancer diagnosis and treatment. In this study, we aimed to study the lncRNAs associated with the outcomes in patients using the breast invasive carcinoma datasets from The Cancer Genome Atlas. The Cox proportional hazards regression model was fitted to each lncRNA. Hierarchy clustering was carried out using these survival-related lncRNAs and the log-rank test was carried out for the clustered groups. DNA methylation status was utilized to identify the lncRNAs regulated by epigenetics. Finally, the coexpressed messenger RNA with the potential lncRNAs were utilized to study the possible functions and mechanisms of lncRNAs. In total, 182 lncRNAs had an impact on the survival time of the patients with a cutoff <0.01. The patients were clustered into three groups using these survival-related genes, which performed significantly different prognosis. Two lncRNAs, which were significantly correlated with the outcomes of breast cancer and were regulated by methylation status, were obtained. These two lncRNAs were TP53TG1 and RP5-1061H20.4. We proposed that TP53TG1 was activated by the wild-type TP53 and performed an impact on the PI3Ks family by binding YBX2 in breast cancer.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号