首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14682篇
  免费   1348篇
  国内免费   1594篇
  2024年   46篇
  2023年   219篇
  2022年   497篇
  2021年   892篇
  2020年   630篇
  2019年   729篇
  2018年   696篇
  2017年   498篇
  2016年   669篇
  2015年   978篇
  2014年   1104篇
  2013年   1239篇
  2012年   1350篇
  2011年   1277篇
  2010年   753篇
  2009年   705篇
  2008年   770篇
  2007年   648篇
  2006年   639篇
  2005年   411篇
  2004年   411篇
  2003年   383篇
  2002年   328篇
  2001年   241篇
  2000年   199篇
  1999年   195篇
  1998年   163篇
  1997年   116篇
  1996年   107篇
  1995年   95篇
  1994年   73篇
  1993年   64篇
  1992年   84篇
  1991年   58篇
  1990年   52篇
  1989年   50篇
  1988年   41篇
  1987年   28篇
  1986年   22篇
  1985年   28篇
  1984年   19篇
  1983年   11篇
  1982年   18篇
  1981年   11篇
  1980年   8篇
  1979年   11篇
  1978年   10篇
  1977年   7篇
  1975年   11篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
Jia J  Zhao Y  Shi WC  Wang HS  Guo Y 《生理学报》2002,54(2):125-128
实验采用分离神经细束的方法,观察逆行电刺激大鼠脊神经背侧皮支后,在相距较远的神经细束上记录到的Aδ和C类机械感受单位电活动的变化。刺激T9脊神经背侧皮支,在T12神经细束上记录到59.3%(16/27)的Aδ和71.2%(37/52)的C类单位在刺激后90~120s放电显著增加。刺激T8脊神经背侧皮支,在T12神经细束上记录到47.8%(11/23)的Aδ单位和36.6%(15/41)的C类单位在刺激后120~150s放电显著增加。大多数单位(18/23)的机械感受阈值在电刺激远距离脊神经背侧皮支后降低。结果表明,逆行电刺激外周感觉神经,可以使相距较远的Aδ和C类机械感受单位致敏,其传入放电增加。  相似文献   
922.
923.
Cell culture process changes (e.g., changes in scale, medium formulation, operational conditions) and cell line changes are common during the development life cycle of a therapeutic protein. To ensure that the impact of such process changes on product quality and safety is minimal, it is standard practice to compare critical product quality and safety attributes before and after the changes. One potential concern introduced by cell culture process improvements is the possibility of increased endogenous retrovirus expression to a level above the clearance capability of the subsequent purification process. To address this, retrovirus expression was measured in scaled down and full production scaled Chinese hamster ovary (CHO) cell cultures of four monoclonal antibodies and one recombinant protein before and after process changes. Two highly sensitive, quantitative (Q)-PCR-based assays were used to measure endogenous retroviruses. It is shown that cell culture process changes that primarily alter media components, nutrient feed volume, seed density, cell bank source (i.e., master cell bank vs. working cell bank), and vial size, or culture scale, singly or in combination, do not impact the rate of retrovirus expression to an extent greater than the variability of the Q-PCR assays (0.2-0.5 log(10)). Cell culture changes that significantly alter the metabolic state of the cells and/or rates of protein expression (e.g., pH and temperature shifts, NaButyrate addition) measurably impact the rate of retrovirus synthesis (up to 2 log(10)). The greatest degree of variation in endogenous retrovirus expression was observed between individual cell lines (up to 3 log(10)). These data support the practice of measuring endogenous retrovirus output for each new cell line introduced into manufacturing or after process changes that significantly increase product-specific productivity or alter the metabolic state, but suggest that reassessment of retrovirus expression after other process changes may be unnecessary.  相似文献   
924.
To evaluate the ability of insect cells to produce complex-type N-glycans, beta-(1 --> 4)-galactosyltransferase (beta4GalT) activity in several insect cell lines was analyzed. For this purpose, we developed a simple and highly sensitive assay for beta-(1 --> 4)-galactosyltransferase (beta4GalT) activity, which is based on time-resolved fluorometry of europium. Bovine serum albumin (BSA) modified with GlcNAc (GlcNAc(44)-BSA) was used as the acceptor. GlcNAc(44)-BSA was coated on a 96-well microplate, and after incubation with the enzyme sample in the presence of UDP-Gal, Eu-labeled RCA(120) (Ricinus communis aggutin I), was added. RCA(120) binds to the Galbeta(1 --> 4)GlcNAc structure in the product, and the bound Eu-RCA(120) was measured by the fluorescence of europium. When bovine beta4Gal-T-I was used as a standard reference enzyme, a linear relationship between enzyme activity and fluorescent signal was obtained over the range of 0-1000 microUnits (IU). Using this system, we were able to measure a low but significant level of beta4GalT activity in Trichoplusia ni cells ('High Five'). In contrast, no endogenous beta4GalT activity was detected in a Spodoptera frugiperda (Sf-9) cell line. However, Sf-9 cells stably transfected with the bovine beta4GalT-I gene and 'High Five' cells infected with a baculovirus containing the same gene produced activity levels that were comparable to or greater than those found in Chinese hamster ovary cells. We also showed that the beta4GalT activity level observed in the baculovirus-infected T. ni cells under the control of immediate early promoter was highly dependent on the post-infection time, suggesting that galactosylation level may also be variable during the infection period.  相似文献   
925.
We report here for the first time that germanium oxide (GeO(2)) blocks cell progression. GeO(2) is not genotoxic to Chinese hamster ovary (CHO) cells and has limited cytotoxicity. However, GeO(2) arrests cells at G2/M phase. The proportion of cells stopped at G2/M phase increased dose-dependently up to 5 mM GeO(2) when treated for 12 h, but decreased at GeO(2) concentration was greater than 5 mM. Analysis of 5-bromodeoxyuridine-labeled cells indicated that GeO(2) delayed S phase progression in a dose-dependent manner, and blocked cells at G2/M phase. Microscopic examination confirmed that GeO(2) treatment arrested cells at G2 phase. Similar to several other events that cause G2 block, the GeO(2)-induced G2 block can also be ameliorated by caffeine in a dose- and time-dependent manner. To explore the mechanism of G2 arrest by GeO(2), cyclin content and cyclin-dependent kinase activity were examined. Cyclin B1 level was not affected after GeO(2) treatment in CHO cells. However, GeO(2) decreased p34(cdc2) kinase (Cdk1) activity. The kinase activity recovered within 9 h after GeO(2) removal and correlated with the transition of G2/M-G1 phase of the cells. This result suggests that GeO(2) treatment reduces Cdk1 activity and causing the G2 arrest in CHO cells.  相似文献   
926.
Components of betel quid (BQ) have been investigated for genotoxicity, mutagenicity, and animal toxicity. However, little information exists regarding their carcinogenic characteristics. Considerable attention has already been focused on tumor promoters that occur environmentally for human uptake. In this study, the promoting effects of BQ and lime-piper additives (LPA) in BQ on epidermal hyperplasia in CD-1 mouse skin are investigated. In the present study, we found that BQ and LPA at concentrations of 25,50,75 mg/ml caused significant induction of hyperplasia, but only LPA caused an increase of epidermal ornithine decarboxylase (ODC). Treatment of mouse skin with LPA caused remarkable increases in the production of H(2)O(2) by 2.41-, 3.90-, and 3.76-fold (for the above-indicated concentrations respectively); as well as marked increases of myeloperoxidase (MPO) by 1.43-, 2.70-, and 2.29-fold. Application of LPA or BQ (50,100,150 mg/ml) also caused induction of protein kinase C-alpha (PKC-alpha) and NF-kappaB. LPA exhibited more significant effect than BQ. Thus, LPA might make a major contribution to the BQ-induced expression of PKC and NF-kappaB. These results indicated that BQ has the potential of being promoting agents, and that LPA should play a major role in increasing the effects of BQ-caused skin hyperplasia and inflammation. The promoting effects of BQ and LPA on mouse skin were associated with the induction of the expressions of PKC and NF-kappaB.  相似文献   
927.
Mutual dependence of MDM2 and MDMX in their functional inactivation of p53   总被引:12,自引:0,他引:12  
MDMX, an MDM2-related protein, has emerged as yet another essential negative regulator of p53 tumor suppressor, since loss of MDMX expression results in p53-dependent embryonic lethality in mice. However, it remains unknown why neither homologue can compensate for the loss of the other. In addition, results of biochemical studies have suggested that MDMX inhibits MDM2-mediated p53 degradation, thus contradicting its role as defined in gene knockout experiments. Using cells deficient in either MDM2 or MDMX, we demonstrated that these two p53 inhibitors are in fact functionally dependent on each other. In the absence of MDMX, MDM2 is largely ineffective in down-regulating p53 because of its extremely short half-life. MDMX renders MDM2 protein sufficiently stable to function at its full potential for p53 degradation. On the other hand, MDMX, which is a cytoplasmic protein, depends on MDM2 to redistribute into the nucleus and be able to inactivate p53. We also showed that MDMX, when exceedingly overexpressed, inhibits MDM2-mediated p53 degradation by competing with MDM2 for p53 binding. Our findings therefore provide a molecular basis for the nonoverlapping activities of these two p53 inhibitors previously revealed in genetic studies.  相似文献   
928.
Previous studies have demonstrated that AKT1 and AKT3 are activated by heat shock and oxidative stress via both phosphatidylinositol 3-kinase-dependent and -independent pathways. However, the activation and role of AKT2 in the stress response have not been fully elucidated. In this study, we show that AKT2 in epithelial cells is activated by UV-C irradiation, heat shock, and hyperosmolarity as well as by tumor necrosis factor alpha (TNFalpha) through a phosphatidylinositol 3-kinase-dependent pathway. The activation of AKT2 inhibits UV- and TNF alpha-induced c-Jun N-terminal kinase (JNK) and p38 activities that have been shown to be required for stress- and TNF alpha-induced programmed cell death. Moreover, AKT2 interacts with and phosphorylates I kappa B kinase alpha. The phosphorylation of I kappa B kinase alpha and activation of NF kappa B mediates AKT2 inhibition of JNK but not p38. Furthermore, phosphatidylinositol 3-kinase inhibitor or dominant negative AKT2 significantly enhances UV- and TNF alpha-induced apoptosis, whereas expression of constitutively active AKT2 inhibits programmed cell death in response to UV and TNFalpha -induced apoptosis by inhibition of stress kinases and provide the first evidence that AKT inhibits stress kinase JNK through activation of the NF kappa B pathway.  相似文献   
929.
Activation of astrocytes is a common feature of neurological disorders, but the importance of this phenomenon for neuronal outcome is not fully understood. Treatment of mixed hippocampal cultures of neurones and astrocytes from day 2-4 in vitro (DIV 2-4) with 1 micro m cytosine arabinofuranoside (AraC) caused an activation of astrocytes as detected by a stellate morphology and a 10-fold increase in glial fibrillary acidic protein (GFAP) level compared with vehicle-treated cultures. After DIV 12, we determined 43% and 97% damaged neurones 18 h after the exposure to glutamate (1 mm, 1 h) in cultures treated with vehicle and AraC, respectively. Dose-response curves were different with a higher sensitivity to glutamate in cultures treated with AraC (EC50 = 0.01 mm) than with vehicle (EC50 = 0.12 mm). The susceptibility of neurones to 1 mm glutamate did not correlate with the percentage of astrocytes and was insensitive to an inhibition of glutamate uptake. In cultures treated with vehicle and AraC, glutamate-induced neurotoxicity was mediated through stimulation of the NR1-NR2B subtype of NMDA receptors, because it was blocked by the NMDA receptor antagonist MK-801 and the NR1-NR2B selective receptor antagonist ifenprodil. Protein levels of the NR2A and NR2B subunits of NMDA receptor were similar in cultures treated with vehicle or AraC. AraC-induced changes in glutamate-induced neurotoxicity were mimicked by activation of protein kinase C (PKC), whereas neuronal susceptibility to glutamate was reduced in cultures depleted of PKC and treated with AraC suggesting that the increase in glutamate toxicity by activated astrocytes involves activation of PKC.  相似文献   
930.
Expression and regulation of peroxiredoxin 5 in human osteoarthritis   总被引:8,自引:0,他引:8  
Reactive oxygen species (ROS) are implicated in the pathogenesis of osteoarthritis (OA). However, little is known about the antioxidant defence system in articular cartilage. We investigated the expression and regulation of peroxiredoxin 5 (PRDX5), a newly discovered thioredoxin peroxidase, in human normal and osteoarthritic cartilage. Our results show that human cartilage constitutively expresses PRDX5. Moreover, the expression is up-regulated in OA. Inflammatory cytokines tumour necrosis factor alpha and interleukin 1 beta contribute to this up-regulation by increasing intracellular ROS production. The present study suggests that PRDX5 may play a protective role against oxidative stress in human cartilage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号