首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14765篇
  免费   1345篇
  国内免费   1616篇
  17726篇
  2024年   63篇
  2023年   248篇
  2022年   549篇
  2021年   895篇
  2020年   632篇
  2019年   729篇
  2018年   696篇
  2017年   498篇
  2016年   669篇
  2015年   978篇
  2014年   1104篇
  2013年   1239篇
  2012年   1350篇
  2011年   1277篇
  2010年   753篇
  2009年   705篇
  2008年   770篇
  2007年   648篇
  2006年   638篇
  2005年   411篇
  2004年   411篇
  2003年   383篇
  2002年   328篇
  2001年   241篇
  2000年   199篇
  1999年   195篇
  1998年   163篇
  1997年   116篇
  1996年   107篇
  1995年   95篇
  1994年   73篇
  1993年   64篇
  1992年   84篇
  1991年   58篇
  1990年   52篇
  1989年   50篇
  1988年   41篇
  1987年   28篇
  1986年   22篇
  1985年   28篇
  1984年   19篇
  1983年   11篇
  1982年   18篇
  1981年   11篇
  1980年   8篇
  1979年   11篇
  1978年   10篇
  1977年   7篇
  1975年   11篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
901.
Expression of brain-derived neurotrophic factor (BDNF) is sensitive to changes in oxygen availability, suggesting that BDNF may be involved in adaptive responses to oxidative stress. However, it is unknown whether or not oxidative stress actually increases availability of BDNF by stimulating BDNF secretion. To approach this issue we examined BDNF release from PC12 cells, a well-established model of neurosecretion, in response to hypoxic stimuli. BDNF secretion from neuronally differentiated PC12 cells was strongly stimulated by exposure to intermittent hypoxia (IH). This response was inhibited by N-acetyl-l-cysteine, a potent scavenger of reactive oxygen species (ROS) and mimicked by exogenous ROS. IH-induced BDNF release requires activation of tetrodotoxin sensitive Na+ channels and Ca2+ influx through N- and L-type channels, as well as mobilization of internal Ca2+ stores. These results demonstrate that oxidative stress can stimulate BDNF release and that underlying mechanisms are similar to those previously described for activity-dependent BDNF secretion from neurons. Surprisingly, we also found that IH-induced secretion of BDNF was blocked by dopamine D2 receptor antagonists or by inhibition of dopamine synthesis with alpha-methyl-p-tyrosine. These data indicate that oxidative stress can stimulate BDNF release through an autocrine or paracrine loop that requires dopamine receptor activation.  相似文献   
902.
903.
Two novel Ru(II) complexes [Ru(bpy)2(MCMIP)]2+ (1) and [Ru(phen)2(MCMIP)]2+ (2) (bpy = 2,2′-bipyridine; phen = 1,10-phenanthroline; MCMIP = 2-(6-methyl-3-chromonyl)imidazo[4,5-f][1,10]-phenanthroline) have been synthesized and characterized by elemental analysis, mass spectra and 1H NMR. The DNA-binding properties of the complexes were investigated by absorption, emission, melting temperature and viscosity measurements. Experimental results indicate that the two complexes can intercalate into DNA base pairs. Upon irradiation at 365 nm, two Ru(II) complexes were found to promote the cleavage of plasmid pBR 322 DNA from supercoiled form I to nicked form II, and the mechanisms for DNA cleavage by the complexes were also investigated.  相似文献   
904.
CD22 is an inhibitory B-cell co-receptor whose function is modulated by sialic acid (Sia)-bearing glycan ligands. Glycan remodeling in the germinal center (GC) alters CD22 ligands, with as yet no ascribed biological consequence. Here, we show in both mice and humans that loss of high affinity ligands on GC B-cells unmasks the binding site of CD22 relative to naive and memory B-cells, promoting recognition of trans ligands. The conserved modulation of CD22 ligands on GC B-cells is striking because high affinity glycan ligands of CD22 are species-specific. In both species, the high affinity ligand is based on the sequence Siaα2–6Galβ1–4GlcNAc, which terminates N-glycans. The human ligand has N-acetylneuraminic acid (Neu5Ac) as the sialic acid, and the high affinity ligand on naive B-cells contains 6-O-sulfate on the GlcNAc. On human GC B-cells, this sulfate modification is lost, giving rise to lower affinity CD22 ligands. Ligands of CD22 on naive murine B-cells do not contain the 6-O-sulfate modification. Instead, the high affinity ligand for mouse CD22 has N-glycolylneuraminic acid (Neu5Gc) as the sialic acid, which is replaced on GC B-cells with Neu5Ac. Human naive and memory B-cells express sulfated glycans as high affinity CD22 ligands, which are lost on GC B-cells. In mice, Neu5Gc-containing glycans serve as high affinity CD22 ligands that are replaced by Neu5Ac-containing glycans on GC B-cells. Our results demonstrate that loss of high affinity CD22 ligands on GC B-cells occurs in both mice and humans through alternative mechanisms, unmasking CD22 relative to naive and memory B-cells.  相似文献   
905.
Mitotic centromere-associated kinesin (MCAK) is the best characterized member of the kinesin-13 family and plays important roles in microtubule dynamics during mitosis. Its activity and subcellular localization is tightly regulated by an orchestra of mitotic kinases, such as Aurora B. It is well known that serine 196 of MCAK is the major phosphorylation site of Aurora B in Xenopus leavis extracts and that this phosphorylation regulates its catalytic activity and subcellular localization. In the current study, we have addressed the conserved phosphorylation site serine 192 in human MCAK to characterize its function in more depth in human cancer cells. Our data confirm that S192 is the major phosphorylation site of Aurora B in human MCAK and that this phosphorylation has crucial roles in regulating its catalytic activity and localization at the kinetochore/centromere region in mitosis. Interfering with this phosphorylation leads to a delayed progression through prometa- and metaphase associated with mitotic defects in chromosome alignment and segregation. We show further that MCAK is involved in directional migration and invasion of tumor cells, and interestingly, interference with the S192 phosphorylation affects this capability of MCAK. These data provide the first molecular explanation for clinical observation, where an overexpression of MCAK was associated with lymphatic invasion and lymph node metastasis in gastric and colorectal cancer patients.  相似文献   
906.
The signaling lymphocyte activation molecule (SLAM) family plays important roles in adaptive immune responses. Herein, we evaluated whether the SLAM family member 2B4 (CD244) plays a role in immune cell development, homeostasis and antibody responses. We found that the splenic cellularity in Cd244 -/- mice was significantly reduced due to a reduction in both CD4 T cells and follicular (Fo) B cells; whereas, the number of peritoneal cavity B cells was increased. These findings led us to examine whether 2B4 modulates B cell immune responses. When we examined T-dependent B cell responses, while there was no difference in the kinetics or magnitude of the antigen-specific IgM and IgG1 antibody response there was a reduction in bone marrow (BM) memory, but not plasma cells in Cd244 -/- mice. When we evaluated T-independent immune responses, we found that antigen-specific IgM and IgG3 were elevated in the serum following immunization. These data indicate that 2B4 dampens T-independent B cell responses due to a reduction in peritoneal cavity B cells, but has minimal impact on T-dependent B cell responses.  相似文献   
907.
茎秆机械强度影响植株抗倒伏能力, 是备受关注的重要农艺性状之一。与野生型相比, 水稻(Oryza sativa)脆秆隐性突变体bc-s1茎秆抗折力和抗张力分别降低31.1%和67.2%, 茎秆纤维素和木质素含量分别降低24.97%和增高38.82%。细胞学分析显示, bc-s1茎秆厚壁细胞发生不规则变化, 次生壁增厚受阻。通过图位克隆和测序分析, 初步确定bc-s1突变体中纤维素合成酶催化亚基Os09g25490/OsCesA9基因第1外显子的第28个碱基G突变为A。该等位突变体的获得为进一步揭示OsCesA9调控细胞壁建成的生物学功能提供了新的研究材料。  相似文献   
908.

Objective

General malnutrition usually occurs in critical limb ischemia (CLI) patients because of shortness of appetite and sleeplessness leaded by chronic pain. And amputation frequently is end-point of CLI patients. So the aim of this study was to assess the predictive ability of Geriatric nutritional risk index (GNRI) for predicting amputation in patients with CLI.

Methods

A retrospective study was designed. Demographics, history, comorbidity, and risk factors for peripheral vascular disease of admitted patients, and laboratory study were documented. Patients’ height, weight and BMI were recorded. Amputation was identified as end-point during follow-up. Patients’ amputation-free survival (AFS) was recorded.

Result

172 patients were identified, with mean age 71.98±3.12. Geriatric nutritional risk index (GNRI) = 90 was taken as cutoff value of high risk of amputation for CLI patients via using receiver operating characteristic (ROC) curve. Span of follow-up was 12–48 months. During follow-up, 60 patients (36.04%) received amputation surgery. And analyzed by Cox proportional hazards model, it is found that GNRI was the independent predictive factor for amputation in long term.

Conclusion

This study revealed that GNRI was a reliable and effective predictive marker for AFS. GNRI could identify patients with high risk for amputation in early time.  相似文献   
909.
乙型肝炎病毒逆转录酶区基因序列准种与变异特点   总被引:7,自引:0,他引:7  
乙型肝炎病毒(Hepatitis B Virus,HBV)P基因编码产物从功能上分为末端蛋白(1~178aa)、间隔区(179~336aa)、逆转录酶区(337~682aa)和RNA酶H区(683~816aa),各区有相应的生物学功能;逆转录酶区包含S基因主蛋白编码区.近年来的研究提出HBV感染者体内存在有准种[1,2]的假说.我们以逆转录酶区序列为研究靶区域,应用聚合酶链反应(PCR)技术扩增慢性乙型肝炎患者血清中的靶基因序列,随机选择克隆测序,比较其结果,证明了HBV准种特点的存在,并发现多种基因突变形式.  相似文献   
910.
The human Shwachman-Diamond syndrome (SDS) is an autosomal recessive disease caused by mutations in a highly conserved ribosome assembly factor SBDS. The functional role of SBDS is to cooperate with another assembly factor, elongation factor 1-like (Efl1), to promote the release of eukaryotic initiation factor 6 (eIF6) from the late-stage cytoplasmic 60S precursors. In the present work, we characterized, both biochemically and structurally, the interaction between the 60S subunit and SBDS protein (Sdo1p) from yeast. Our data show that Sdo1p interacts tightly with the mature 60S subunit in vitro through its domain I and II, and is capable of bridging two 60S subunits to form a stable 2:2 dimer. Structural analysis indicates that Sdo1p bind to the ribosomal P-site, in the proximity of uL16 and uL5, and with direct contact to H69 and H38. The dynamic nature of Sdo1p on the 60S subunit, together with its strategic binding position, suggests a surveillance role of Sdo1p in monitoring the conformational maturation of the ribosomal P-site. Altogether, our data support a conformational signal-relay cascade during late-stage 60S maturation, involving uL16, Sdo1p, and Efl1p, which interrogates the functional P-site to control the departure of the anti-association factor eIF6.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号